• 제목/요약/키워드: Wear Mechanism

검색결과 455건 처리시간 0.028초

환경영향인자를 고려한 궤도수명산정 기법 개발 (Development of evaluation method for the railroad track life cycle considering environmental effect factors)

  • 공정식;정민철;김정훈;이원우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.167-172
    • /
    • 2011
  • Generally, the analysis of railroad wear data is most effective method for the efficient railway maintenance. The wear of railway track affects loss of rough ride, noise or vibration of train and traveling safety. Moreover as the track is worn away, this promotes destruction of structural mechanism of rail track which can bring about increasing of rail track maintenance cost drastically. For this reason, it is very important and interested research subject to design railway track structure and to analyse train movement mechanism based on systematic analysis of the reasons causing rail wear possible in real field. In this research, for the efficient maintenance, Life Cycle Performance of rail track and maintenance characteristics are computed considering some track components such as track type, contracting type, sleeper type and roadbed type. Time - Wear probabilistic distribution relationship as well as multiple regression analysis based on time, curvature and wear data are computed to predict the service life remainder of railway track and to be adapted to safety assessment.

  • PDF

내마모첨가제가 첨가된 식물성유의 마모특성연구 (Wear Properties of Vegetable Oils Formulated with Some Antiwear Additives)

  • 최웅수;안병길;정용진;권오관
    • Tribology and Lubricants
    • /
    • 제12권3호
    • /
    • pp.6-11
    • /
    • 1996
  • There has been a growing concern for the use of mineral oil based lubricants because of the worldwide interest in environmental issues. This has prompted the use of vegetable oils as more environmentally acceptable base fluids. In view of this, four-ball wear test was carried out to investigate the tribological behavior of selected vegetable oils blended with ZDDP, TCP and DBP under high speed and temperate conditions. Of the additive evaluated, the new additive, DBP has provided antiwear performance superior to the two other additives more commonly used. This superior performance by DBP is probably caused by different wear mechanism. This wear mechanism has been evidenced by the surface analysis of worn balls conducted using optical microscope and EDAX.

표면 요철을 가지는 탄소 섬유/에폭시 복합재료의 마찰 및 마모 특성 (Tribological Behaviors of Carbon-Epoxy Composite with surface grooves)

  • 김성수;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.180-184
    • /
    • 2004
  • The tribological behavior of carbon epoxy composites whose surfaces have many small grooves of $100\mu m$ width was experimentally investigated with respect to the sliding direction against groove orientation, surface pressure (P) and velocity (V). The wear mechanism of the composites was observed to calculate the wear volume with respect to the friction coefficient using scanning electron microscopic (SEM). Experimental results show that the abrasive wear is dominant wear mechanism for the grooved composite surface and the friction and wear are greatly reduced when the sliding direction is parallel to the axis of groove because abrasive particles are removed through the grooves effectively.

  • PDF

LM 가이드의 내마모성 향상을 위한 Me-DLC 코팅박막의 성능평가 (The Performance Test on Me-DLC Films for Improving Wear Resistance of LM-Guide)

  • 강은구;이동윤;김성영
    • 한국정밀공학회지
    • /
    • 제29권4호
    • /
    • pp.409-416
    • /
    • 2012
  • Recently, surface modification technology is of importance to improve the wear resistance and the corrosive resistance for high accurate mechanical parts such as LM guide, Ball Screw and Roller Bearing etc., Those has generally featured on rolling contact mechanism to improve not only the wear and the friction, but also the accuracy and the corrosion performances. For surface modifications of high accurate mechanical parts, normally thermal spray, PVD, CVD and E.P. processes have been used with many materials such as DLC, raydent, W, Ni, Ti etc. Diamondlike carbon (DLC) films possess a combination of attractive properties and have been largely employed to modify the tribological behaviors such as friction, wear, corrosion, fretting fatigue, biocompatibility, etc. However, for rolling contact mechanism mechanical parts DLC films are needed to study for commercial benefit. Rolling contact mechanism has features on effects of cyclic motions and stresses, and also not simply sliding motions. The papers focused on the performance test of wear and corrosive resistance according to Me-DLC film thickness. And also, its thickness effect of wear analysis was carried out through the simulation of the maximum shear stress under the rolling contact surface. As the results, Me-DLC films have more potential to improve the wear resistance for high precision mechanical parts than raydent films.

경화강에 대한 세라믹공구의 손상특성에 관한 연구 (A Study on the Failure Characteristics of Ceramic Tool for Hardened Steels)

  • 김광래;유봉환
    • 한국정밀공학회지
    • /
    • 제14권4호
    • /
    • pp.30-37
    • /
    • 1997
  • This thesis is concerned with the study on the characteristics of the tool failure occuring at the beginning of cutting in finish machining of hardened steels such as carbon tool steel and alloy tool steel by a ceramic tool (Al$_{2}$O$_{3}$+TiC) with nose radius. In the machining of hardened carbon steel STC3, the wear mechanism on the flank face of the ceramic tool is abrasion wear. The mode of tool failure is developed into catastropic fracture with flaking. It is thought that the fracture caused by FeO and TiO$_{2}$ results from the oxidation of Fe in the workpice and TiC in the ceramic tool and the deposit of Fe formed on the surface of the ceramic tool. In the machining of hardened alloy steel STD11, the wear mechanism on the flank face of the ceramic tool is that abrasion and adhesion wear exist simultaneously. The mode of tool failure at the beginning of cutting features is DOC notch wear. It is thought that the DOC notch wear caused by FeO and TiO$_{2}$results from the oxidation of Fe and TiC in the workpiece and ceramic tool, respectively.

  • PDF

고온하에서 질화규소의 트라이볼로지적 특성 (Tribological Characteristics of Silicon Nitride on Elevated Temperature)

  • 김대중;채영훈;김석삼
    • Tribology and Lubricants
    • /
    • 제16권4호
    • /
    • pp.282-288
    • /
    • 2000
  • A sliding friction and wear test for silicon nitride (Si,N4) was conducted using a ball-on-disk specimen configuration. The material used in this study was HIPed silicon nitride. The tests were carried out from room temperature to 1000$^{\circ}C$ using self-mated silicon nitride couples in laboratory air. The worn surfaces were observed by SEM and the debris particles from the worn surfaces were analyzed for oxidation by XPS. The normal load was found to have a more significant influence on the friction coefficient of the silicon nitride than an elevated temperature. The specific wear rate was found to decrease along with the sliding distance. The specific wear rate at 29.4 N and 1000$^{\circ}C$ was 292 times larger than that at room temperature. The main wear mechanism from room temperature to 750$^{\circ}C$ was caused by brittle fracture whereas from 750$^{\circ}C$ to 1000$^{\circ}C$ the wear mechanism was mainly influenced by the oxidation of silicon nitride due to the increased temperature. The oxidation of silicon nitride at a high temperature was a significant factor in the wear increase.

질소이온 코팅 SCM415강의 마찰.마모특성에 관한 연구 (A Study on the Friction and Wear Characteristics of Nitrogen Ions Coated SCM415 Steel)

  • 류성기;하위파;손유선
    • Tribology and Lubricants
    • /
    • 제23권1호
    • /
    • pp.14-18
    • /
    • 2007
  • SCM415 alloy was implanted with nitrogen ions using plasma source ion implantation (PSII), at a dose range of $1{\times}10^{17}\;to\;6{\times}10^{17}N^{+}cm^{-2}$. Auger electron spectrometry (AES) was used to investigate the depth profile of the implanted layer. Friction and wear tests were carried out on a block-on-ring wear tester. Scanning electron microscopy (SEM) was used to observe the micro-morphology of the worn surface. The results revealed that after being implanted with nitrogen ions, the frictional coefficient of the surface layer decreased, and the wear resistance increased with the nitrogen dose. The tribological mechanism was mainly adhesive, and the adhesive wear tended to become weaker oxidative wear with the increase in the nitrogen dose. The effects were mainly attributed to the formation of a hard nitride precipitate and a supersaturated solid solution of nitrogen in the surface layer.

유한요소해석에 의한 DLC 코팅면의 마멸기구에 대한 연구 (A Study on Wear Mechanism in Diamond-like Carbon Coated Surface by Finite Element Analysis)

  • 이준혁;박태조
    • Tribology and Lubricants
    • /
    • 제29권6호
    • /
    • pp.366-371
    • /
    • 2013
  • Various heat treatment and surface coating methods have been applied to machine parts. Nowadays, diamond-like carbon (DLC) coatings are widely used because of their excellent tribological characteristics. Despite the numerous studies on DLC-coated engineering surfaces, the exact wear mechanisms related to the coating thickness and elastic modulus have not been fully examined. In this study, a sliding contact problem between a small spherical hard particle and a DLC-coated steel surface is analyzed using a nonlinear finite element code, MARC. The maximum principal stress distributions and deformed surfaces are compared for different coating thicknesses and Young's modulus values. Plastically deformed surface shapes such as a groove and torus indicate that the most dominant wear mechanism for a DLC-coated surface is abrasive wear. Fatigue wear can also play a role in a case where the coating thickness is relatively large and the elastic modulus is high.

분사주조한 Al기지 입자강화 복합재료의 마모특성 (Characterization of Wear Resistance of Particle Reinforced Al Matrix Composite Manufactured by Centrifugal Spray Casting)

  • 배차헌;최학규;방국수
    • 한국주조공학회지
    • /
    • 제24권2호
    • /
    • pp.108-114
    • /
    • 2004
  • $Al_2O_3$, SiC reinforced Al matrix composites were fabricated by centrifugal spray casting method and their wear resistance characteristics have been studied. Particles are generally uniformly distributed in the microstructure of as-cast specimens. In order to investigate the effect of secondary deformation, hot rolling was performed for each specimen of pure Al matrix composites with a reduction of 10, 20, 30, 40 and 50% at $400{\sim}500^{\circ}C$, respectively. Microstructure of specimen showed that particle distribution density and hardness increased because of increasing of reduction ratio. Wear test with a various sliding velocity of 1.98, 2.38, 2.88 and 3.53m/sec showed that the wear resistance characterization of composite improved remarkably compared to the normal alloy and performs without reinforced particles. Microstructural observation for the worn surface of pure Al specimens without particles showed that a change in wear mechanism seemed to separate layer by surface fatigue. In other case of Al composite reinforced with $Al_2O_3$ and SiC, the grinder type of wear mechanism was shown.

아-크로 천정용 고알루미나질 벽돌의 용손기구에 관한 연구 (Studies on Wear Mechanism of High Alumina Brick for Arc-furnace Roof)

  • 허삼덕;오기동
    • 한국세라믹학회지
    • /
    • 제23권2호
    • /
    • pp.55-63
    • /
    • 1986
  • In variuos physcial and chemical cause of damage of refractories for steel makin the clarification of the wear mechanism of brick is situated on important factor. In the present paper the wear mechanism of high alumina brick for the arc-furnace roof were inves-tigated by means of XRD, EPMA. SEM and microscopy. The results obtained were summerized as follows : (1) The altered layers which exist in high alumina brick used for arc-furnace roof were verified by mineral chemical analysis and EPMA. (2) The diffusion of materials combined with slag dust and iron oxide from furnace atmosphere in high basic process from hot face to interior was verified. (3)Activation energy for the synthesized slag permeated into the unused brick texture was 47-51 kcal per mole.

  • PDF