• Title/Summary/Keyword: Wear Depth

Search Result 413, Processing Time 0.024 seconds

Development of Analysis Scheme to Predict Regrinding in Shearing Process (전단가공 금형의 재연삭시기 예측을 위한 해석기법 개발)

  • Ko, Dae-Cheol;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.182-190
    • /
    • 1999
  • The objective of this study is to develop an analysis scheme in order to predict regrinding due to tool wear in shearing process. The analysis of material now and fracture in shearing process should precede the prediction of tool wear. Thus the developed FE-program to analyze shearing process is used. In order to predict tool wear, the wear model is reformulated as an incremental form and then the wear depth of tool is calculated at each deformation path. Because the regrinding of shearing tool is determined on the basis of allowable size of burr, the analysis of shearing process is iteratively performed using the worn profile of tool. To show the effectiveness of the scheme the simulation result is compared with experimental one.

  • PDF

A Study on Tool Wear Diagnosis by Measuring Spindle Displacement (주축 변위 측정을 통한 공구 마모 진단에 관한 연구)

  • 김진현;김일해;장동영;한동철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.222-228
    • /
    • 2003
  • A reliable tool wear monitoring technique is the one of important aspects for achieving an integrated and self-adjusting manufacturing system. In this paper, a tool wear estimation approach for turning is proposed. This approach uses the model of cutting force, spindle displacement and their relation. A series of experiments were conducted by designing experimental techniques to determine the relationship between flank wear and cutting force coefficient as well as cutting parameters such as cutting speed, depth of cut and feed. The proposed model performance has shown that the spindle displacement model predicts tool wear with high accuracy and spindle displacement signal is possible to replace cutting force signal.

Improvement and Verification of the Wear Volume Calculation

  • Kim, Hyung-Kyu;Lee, Young-Ho
    • KSTLE International Journal
    • /
    • v.6 no.1
    • /
    • pp.21-27
    • /
    • 2005
  • A technique for a wear volume calculation is improved and verified in this research. The wear profile data measured by a surface roughness tester is used. The present technique uses a data flattening, the FFT and the windowing procedure, which is used for a general signal processing. The measured value of an average roughness of an unworn surfnce is used for the baseline of the integration for the volume calculation. The improvements from the previous technique are the procedures of the data flattening and the determination of a baseline. It is found that the flattening procedure efnciently manipulates the raw data when the levels of it are not horizontal, which enables us to calculate the volume reasonably well and readily. By comparing it with the weight loss method by using artificial dents, the present method reveals more volume by aroung 3~10%. It is attributed to the protruded region of the specimen and the inaccuracy and data averaging during the weght loss measurement. From a thorough investigation, it is concluded that the present technique can provide an accurate wear volume.

The Analysis for Surface Hardening by Repeated Sliding Contact (반복 미끄럼 접촉에 의한 표면층의 경화에 대한 해석)

  • 박준목;김석삼
    • Tribology and Lubricants
    • /
    • v.13 no.4
    • /
    • pp.71-78
    • /
    • 1997
  • Wear is affected by numerous factors-contact load, sliding velocity and distance, friction coefficient, material properties and environmental conditions. Among these wear factors, surface hardness is one of very important factors to determine wear. But surface hardness is varied by work hardening during repeated sliding contact. In this reason wear rate is increased or decreased with varying surface hardness, and transition of wear mechanism is happened. In this study, the surface hardening by accumulating residual stress was analyzed by considering the repeated sliding Hertzian contact model. The results showed that surface hardness was increased with increasing contact load, friction coefficient and contact number. And the depth of hardening layer, plastic layer and elastic layer depended upon contact load and number, but they didn't depend upon friction coefficient. The predicted surface hardness was about 1.5-1.8 times as hard as the material.

A Study on Tool Wear Diagnosis by Measuring Spindle Displacement (주축 변위 측정을 통한 공구 마모 진단에 관한 연구)

  • 김진현;김일해;장동영;한동철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.459-464
    • /
    • 2001
  • A reliable tool wear monitoring technique is the one of important aspects for achieving an integrated and self-adjusting manufacturing system. In this paper, a tool wear estimation approach for turning is proposed. This approach uses the model of cutting force, spindle displacement and their relation. A series of experiments were conducted by designing experimental techniques to determine the relationship between flank wear and cutting force coefficient as well as cutting parameters such as cutting speed, depth of cut and feed. The proposed model performance has shown that the spindle displacement model predicts tool wear with high accuracy and spindle displacement signal is possible to replace cutting force signal.

  • PDF

Effect of Cutting Condition on the Tool Wear in Turning of the Presintered Low Purity Alumina Ceramics (저순도 알루미나 세라믹 예비소결체의 선삭에서 공구 마멸에 미치는 절삭 조건의 영향)

  • Lee, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.14-21
    • /
    • 2010
  • In this study, presintered low purity alumina ceramics were machined with various tools to clarify the effects of the tool material, cutting condition and tool geometry on machinability. The main conclusions obtained were as follows. (a)The wear of tungsten carbide tool becomes smaller with the increase of the feed and clearance angle, and with the decrease of rake angle, especially exhibiting considerably smaller wear with both the decrease of rake angle and the increase of clearance angle. (b) So far as turning the ceramic presintered at low temperature, the diamond tool shows the best performance with higher feed. (c) The effect on the tool wear of the feed, clearance angle and rake angle becomes smaller in turning the ceramic presintered at higher temperature. (d) The tool wear is not severely affected by the depth of cut.

Burst Behavior of Wear Scar of Steam Generators Tubes (증기발생기 전열관 마모 파열 거동)

  • Kim, Hong-deok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • Nuclear steam generator tubes have experienced wear degradation at tube support structure. Morphology of wear scar was analyzed by using eddy current signal. A burst test facility for steam generator tubes was established and tubes with 3 types of defects were tested. The burst test results show that the depth of wear scar is the main factor influencing the burst pressure of tubes, meanwhile, both the longitudinal length and the angle also have effect on the burst pressure. Based on test results, the burst pressure equation for wear degradation was proposed.

  • PDF

The Analysis on Wear Behavior of Cu-$TiB_2$ Composite For Contact Wire (전차선용 Cu-$TiB_2$ 복합재료의 마모거동에 관한 분석)

  • Kim Jung-Nam;Lee Tae-Woo;Kwon Sung-Tae;Kang Kae-Myung
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.704-709
    • /
    • 2004
  • The wear behavior and the mechanical property of Cu-$TiB_2$ composites were examined. Cu-$TiB_2$ composites were fabricated by hot extrusion and cold drawing with $TiB_2$ contents(1$\∼$5vol.$\%$) and the size of $TiB_2$ particles(10$\mu$m and 20$\mu$m). The pin-an-disk wear test was carried out under dry sliding wear conditions which loads varied with from 20N to 100N. At the time, counterpart wear material used SM45C. The experimental results showed that the friction coefficient and wear rate decreased with increasing the $TiB_2$ contents and decreasing the size of $TiB_2$ particle. Also, the depth of plastically deformed zone decreased with increasing the $TiB_2$ contents and decreasing the size of $TiB_2$ particle.

  • PDF

Fretting Wear of Fuel Rods due to Flow-Induced Vibration

  • Kim, Yong-Hwan;Jeon, Sang-Youn;Kim, Jae-Won
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.21-26
    • /
    • 1996
  • Recently several PWR Nuclear Plant experienced fuel rod fretting wear failures due to Flow Induced Vibration. When such multi-span supported fuel assembly has vibration excitation, it is important to know how fretting wears are progress and when the fuel rods are start to failure. In this study, we estimate the amount of wear depth using Archard theory when the fuel rod starts to relative motion against spacer grid dimples.

  • PDF

A Study on Engine Valve and Seat Insert Wearing Depending on Speed Change (속도변화에 따른 엔진 밸브 및 시트 인서트의 마모에 관한 연구)

  • 전경진;홍재수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.14-20
    • /
    • 2003
  • The minimization of valve and seat insert wear is a critical factor in the pursuit of engine performance improvement. In order to achieve this goal, we have developed a new simulator, which can generate and control high temperatures up to $900^{\circ}C$ and various speeds up to 80Hz during motion, just like an actual engine. The wear simulator is considered to be a valid simulation of the engine valve and seat insert wear process with various speeds during engine activity. The objective of this work focuses on the different degrees of wear from two different test speeds (10Hz & 25Hz). For this study, the temperature of the outer surface of the seat insert was controlled at $350^{\circ}C$, the cycle number was 2.1$\times$106, and the test load was 1960N. The wear depth and surface roughness were measured before and after the testing using a confocal laser scanner. It was found that a higher speed (25Hz) causes more wear than a lower speed (10Hz) under identical test conditions (temperature, cycle number and test load). In the wear mechanism adhesive wear, shear strain and abrasive wear could be observed.