• Title/Summary/Keyword: Wear Depth

Search Result 414, Processing Time 0.024 seconds

Study on Wear of Journal Bearings during Start-up and Coast-down Cycles of a Motoring Engine - II. Analysis Results (모터링 엔진의 시동 사이클 및 시동 정지 사이클에서 저어널베어링의 마모 연구 - II. 해석 결과)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.31 no.3
    • /
    • pp.125-140
    • /
    • 2015
  • In this paper, we present the results of the wear analysis of journal bearings on a stripped-down single-cylinder engine during start-up and coast-down by motoring. We calculate journal bearing wear by using a modified specific wear rate considering the fractional film defect coefficient and load-sharing ratio for the asperity portion of a mixed elastohydrodynamic lubrication (EHL) regime coupled with previously presented graphical data of experimental lifetime linear wear in radial journal bearings. Based on the calculated wear depth, we obtain a new oil film thickness for every crank angle. By examination of the oil film thickness, we determine whether the oil film thickness at the wear scar region is in a mixed lubrication regime by comparing dimensionless oil film thickness, h/σ, to 3.0 at every crank angle. We present the lift-off speed and the crank angles involved with the wear calculation for bearings #1 and #2. The dimensionless oil film thickness, h/σ, illustrates whether the lubrication region between the two surfaces is still within the bounds of the mixed lubrication regime after scarring of the surface by wear. In addition, we present in tables the asperity contact pressure, the real minimum film thickness at the wear scar region, the modified specific wear rate, and the wear angle, α, for bearings #1 & #2. To show the real shape of the oil film at wear scar region, we depict the actual oil film thickness in graphs. We also tabulated the ranges of bearing angles related with wear scar. We present the wear volume for bearings #1 and #2 after one turn-on and turn-off of the engine ignition switch for five kinds of equivalent surface roughness. We show that the accumulated wear volume after a single turn-on and turn-off of an ignition switch normally increases with increasing surface roughness, with a few exceptions.

Design Development of Shirts in Outdoor-Wear for New Senior Women's Using 3D Simulation Software - CLO 3D - (뉴 시니어 여성을 위한 아웃도어 웨어 디자인 개발 - CLO 3D를 활용한 여름용 상의 디자인 -)

  • Ji, Kyoungha;Choi, Yoonmi
    • Journal of the Korean Society of Costume
    • /
    • v.65 no.5
    • /
    • pp.62-73
    • /
    • 2015
  • The aim of this research is to propose the final shirt design modified for new senior women that fulfills their emotional and physical needs. The modifications were based on the results of in-depth interviews and literature search, and the study was conducted in order to understand the desires and preferences of senior women, as consumption of outdoor-wear by the group continues to increase. To develop the design of outdoor-wear that satisfies the physical and emotional qualities and preference of the new senior women, six different designs with lines, combined materials, as well as materials that were layered, pleated and draped were proposed using virtual-dressing simulation software. Then, the modified designs were derived from the six original designs by reflecting the opinions collected in the in-depth interviews with eleven women in their 50s. The responses in the interviewed showed a preference for lines, pleats and layers, as these features made the clothes look trendy, gave it a slender-look, and improved the body shape of the women. As the color is the critical factor for outdoor-wear, there was an overwhelming preference for primary colors by the women, which was in contrast to their color preference in general clothes. A sleeve design modification was proposed to convert the half-sleeves to 3/4-long sleeves in order to account for changes in body temperature at menopause, and to satisfy the aesthetic needs for covering wrinkles. Research of new senior outdoor-wear designs will help segment and differentiate strategies for the increasingly fierce competing outdoor market, as well as l provide directions in the design creation process using the simulation of 3D virtual model.

The Evaluation of Wear Characteristics Depending on Components of Surface Treatment for Cemented Carbide Endmill (초경엔드밀 적용 표면처리 조성별 마모특성 영향 평가)

  • Yoon, Il Chae;Kim, Dong Bae;Youn, Guk Tae;Yoon, In Jun;Lee, Ji Hyung;Ko, Tae Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.6
    • /
    • pp.513-519
    • /
    • 2014
  • For depth machining in die and mold, Electrical Discharge Machining (EDM) is used generally. To make deep hole and deep shape efficiently, cemented carbide endmill for depth machining is necessary. For this purpose, cemented carbide endmill was designed using design of experiment (DOE). To improve cutting performance, endmill was coated with multilayer surface treatment, TiAlCrSiN and TiAlCrN, for higher wear resistance. In order to evaluate the endmill, Transverse Rupture Strength (TRS) test was tried for investigating the relationship between surface treatment and strength in endmill body. Scratch test was also used for measuring adhesion force of each surface treatment. To evaluate hardness of surface treatment, Atomic Force Microscope (AFM) analysis was carried out. Wear test was executed for characteristics of each surface treatment in high temperature. Consequently, TiAlCrSiN was superior to the TiAlCrN coating in case of high temperature environment such as cutting.

Development of Reliability Prediction Program for Tool Life (공구 수명의 신뢰성 예측 프로그램 개발)

  • 이수훈;김봉석;강태한;송준엽;강재훈;서천석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.317-322
    • /
    • 2004
  • This paper deals with a prediction method of tool life in view of the reliability assessment. In this study, the flank wear was studied among multi-factors deciding the tool wear state. Firstly, tool lift was predicted by correlation between flank wear and cutting time, based on the extended Taylor tool life equation of turning data, including parameters of cutting speed, feed rate, and cutting depth. Secondly, each of cutting conditions of endmilling was equivalently converted to apply ball endmill data to the extended Taylor equation. The web-based reliability prediction program for tool lift is being developed as one of reliability assessment programs to for the machine tools.

  • PDF

A Study on the Cutting Resistance and Acoustic Emission Signal due to Increasing Tool Wear in Turning (선삭가공에서 공구마멸에 따른 절삭력과 AE 신호의 특성 연구)

  • 맹민재
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.2
    • /
    • pp.18-24
    • /
    • 1995
  • In order to achieve the autimation and untended system of manufacturing process, it is necessary that the monitoring system check up the disorder of machine tool or the conditions of tool wear for the maximum use of cutting tool. In the metal cutting Process, AE signal is detected by AE sensor, then amplified and transmitted to an Locan-AT. The experiment was performed to SM25C and STS304 steels at uniform feedrate, cutting speed and depth of cut, The results of experimental data apparently showed emission intensity vary due to increasing of tool wear at the 165kHz, 200kHz in the SM25C and 140kHz, 165kHz, 200kHz, in the STS304 respectively Therefore, it is possible to predict the tool wear. This study is intended to suggest the way to the automation and untended system of machine tool through the system monitoring tool wear by using AE signal.

  • PDF

Turning Characteristics of Fiber-Reinforced Plastics by Coated Tools (코팅공구에 의한 섬유강화 복합재료의 선삭가공 특성)

  • 정용운;김주현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.38-42
    • /
    • 2001
  • In the machining of glass fiber reinforced plastics(GFRP), turning has been often used. But the most of past studies have been interested in the effect of fiber orientation on tool wear. In this study, the effects of fiber contents and cutting speeds on tool wear, cutting force and surface roughness are investigated experimentally. By proper selection of cutting tool, the variables are cutting speed, fiber contents and cutting length with fixed feed rate and depth of cut. The fiber contents have major effects on coated tool wear which observed as abrasive wear type.

  • PDF

Development of a Tool Life Prediction Program for Increasing Reliability of Cutting Tools (공구의 신뢰성 향상을 위한 수명 예측 프로그램 개발)

  • Kim Bong-Suk;Kang Tae-Han;Kang Jae-Hun;Song Jun-Yeob;Lee Soo-Hun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.1-7
    • /
    • 2005
  • The prediction for tool life is one of the most important factors for increasing reliability, stability, and productivity of manufacturing system. This paper deals with a tool life prediction method in view of reliability assessment for cutting tools. In this study, flank wear was focused among multi-factors deciding the tool wear state. First, tool life was predicted by correlation between flank wear and cutting time, based on the extended Taylor tool life equation of turning, including parameters of cutting speed, feed rate, and cutting depth. Second, each of cutting conditions of end-milling was equivalently converted to apply ball end-mill data to the extended Taylor equation. The web-based prediction program for tool life was developed as one of reliability assessment programs for machine tools.

A study on monitoring of milling tool wear for using the acoustic emission signals (공구마멸 감시에 음향방출 신호를 이용하기 위한 연구)

  • 윤종학
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.3
    • /
    • pp.15-21
    • /
    • 1996
  • This study is focused on the prediction of appropriate tool life by clarifying the correlation between progressive tool wear and AE(Acoustic Emission) signals, while cutting stainless steel by end mill on the machining center. The results of this study were that RMSAE tends to increase linearly along with the increase of the cutting speed, and it was more sensitive to depth of cut than to the variation of feed rate at the same cutting conditions, and RMSAE increases around 0.21mm flank wear hereby AE-HIT also increases. AE signals depend upon tool wear and fracture from the above results. Therefore, the AE signals can be utilized in order to monitor the tool condition.

  • PDF

A Method for Prediction of Tube Wear by Relative Displacement in the case of Inclined Contact between Tube & Support of Steam Generator (증기발생기에서 지지대와 세관의 경사면 접촉시 상대변위에 의한 세관 마모량 예측 방법)

  • Lee, Yong-Son;Park, Moon-Ghu;Kim, Tae-Soon;Park, Chi-Yong;Boo, Myung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1168-1173
    • /
    • 2003
  • When the tube contacted to support and antivibration bar of the steam generator in unclear power plant, the contact area is worn out by their relative displacement. In the study, wear depths of the tube inclined to tube support and antivibration bar are approximately predicted by a method using the contact load and relative displacement. In the case of the inclined contact, the results show wear depths of the steam generator tube predicted by the impact model are larger than those by the sliding model.

  • PDF

Life Estimation of Hot Forging Die by Plastic Deformation and Wear (소성변형 밀 마멸에 대한 열간 단조 금형의 수명 평가)

  • 이현철;김병민;김광호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.66-75
    • /
    • 2003
  • This paper describes about the estimation method of die lift by wear and plastic deformation in hot forging process. The thermal load and the thermal softening are happened by the high temperature in hot forging process. Tool lift decreases considerably due to the softening of the surface layer of a tool caused by high thermal load and long contact time between tool and billet. Also, tool life is to a large extent limited by wear, heat crack and plastic deformation in hot forging process. Above all, the main factors which affects die accuracy and tool lift are wear and the plastic deformation of a die. The new developed technique for predicting tool life applied to estimate the production quantity for a spindle component and these techniques assist to improve the tool life in hot forging process.