• Title/Summary/Keyword: Weapon System

Search Result 1,012, Processing Time 0.044 seconds

Plug-and-Play Framework for Connectivity Control and Self-Reconfiguration of Weapon System Components (무기체계 구성장치의 연결성 제어 및 자율 재구성을 위한 플러그앤플레이 프레임워크)

  • Chang, HyeMin;Kang, SukJong;Cho, YoungGeol;Yoon, JooHong;Yun, Jihyeok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.328-338
    • /
    • 2021
  • A study on common modular design based on open standards to reduce the life cycle cost of ground weapon system is underway. Since the ground weapon system includes major mission equipment such as fire control system, it is essential to apply the concept of fault tolerance through automatic reconfiguration and blocking unspecified equipment through connectivity control. However, it is difficult to generalize due to the difference in operating characteristics for each system. In this paper, we propose a plug-and-play framework, which includes plug-and-play architecture and mechanism. The proposed method can be used in common by the application of each component as it is divided into a common service layer. In addition, the proposed connectivity control and autonomous reconfiguration method facilitates reflection of operating characteristics for each system. We constructed a verification environment that can simulate ground weapon systems and components, and verified that the proposed framework works through scenario-based functional tests.

A study on the development of Logistic Support system (군수 지원시스템 개발 방법에 관한 연구)

  • 신주환;전완수;김형렬
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.166-172
    • /
    • 1999
  • Weapon system is defined as a combination of primary system and logistics support system which are evaluated by capability and operational availability respectively. Weapon system developer thought that primary system was weapon system and also only primary system was important. Recent comparison of total life cycle cost showed that logistics support system was proved to be more important than primary system. However, until now no systematic approach to logistics support system development have applied in the area of developing support system and much money was exhausted by wrong logistics support system. We need to construct a universal metric for effectiveness of logistics support system and to cut out whatever activities or support elements which do not contribute to the metrics. This study describes a new approach under the name function approach to logistics support system development and also classifies five factors of failure frequency, stock out of frequency, administrative delay time, active repair time and logistic delay time that have influence on operational availability of logistics support system.

  • PDF

Reliability improvement method in weapon systems through field failure data analysis (무기체계 고장사례분석으로 본 무기체계 신뢰성 개선방안)

  • Song, Il-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.110-117
    • /
    • 2018
  • Recently, as weapon systems have become more complex and multi-functional, the difficulty of the operation and maintenance of weapon systems in the military have become increasingly difficult. On the other hand, the service period of operations and maintenance workers who perform operations and maintenance has been shortened, and the skill of system operation and maintenance has been lowered. This complexity and multi-functionality of equipment cause malfunctions and errors of users and maintenance personnel, and degradation of the reliability affects availability and combat readiness. In addition, life cycle costs have been gradually increasing. Therefore, I would like to suggest an improvement plan of the design of weapon systems and ILS (Integrated Logistics Support) in order to examine the implications of failure in the military. The weapon system is operated in the ROK Navy. Data from 730 cases of failure of weapon systems was collected, and analyzed. The results of the analysis are classified into failures that can be prevented in advance and failures that cannot be prevented. This shows the portion of preventable failures in weapon systems and proposes measures to minimize failures.

A Study on a Modified Documentation Set based on Systems Engineering for Unitary Development Phase of an Weapon System (단일단계 무기체계개발을 위한 시스템엔지니어링 기반 문서화체계 개선 방안 연구)

  • Sung, Il;Kim, Jin Seok;Lee, Bong Ki
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.25-31
    • /
    • 2013
  • In this paper, we have analyzed documentation cases since DAPA establishment, in which documents must be produced as a result of weapon system development corresponding to systems engineering procedures. To develop documentation materials based on systems engineering, instructions of DAPA and US military standards that define development phases, are presented and analyzed in the point of standardizing documents. As a result, we propose a kind of documentation based on systems engineering which is essential for the weapon system development.

A Strategy of Selecting Critical Items for Reliability Tests Using Fuzzy Inference (퍼지추론을 이용한 신뢰성 시험 대상 품목 선정 전략)

  • Son, Young-Beom;Yang, Jung-Min
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.4
    • /
    • pp.205-214
    • /
    • 2018
  • The reliability test is a crucial step for ensuring robustness of high-cost and complex weapon systems. In this paper, we present a set of quantitative criteria to select critical parts or components in weapon systems for the reliability test, and implement a fuzzy inference system by applying developed criteria to fuzzy theory. We classify the selection criteria of critical parts or components into four fuzzy sets and membership functions. A fuzzy inference rule is proposed based on the AHP (Analytic Hierarchy Process) analysis technique so as to derive a convincing reliability test. The credibility of the fuzzy inference system is confirmed through a case study using actual equipment data exacted from an existent weapon system.

LOS Analysis Algorithm for Mid-range Guided Weapon System (중거리지대공 유도무기체계 적용을 위한 가시선 분석 알고리듬 연구)

  • Lee, Han-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.642-649
    • /
    • 2010
  • LOS analysis is used for optimal deployment of mid-range guided weapon system or system engagement effectiveness simulation. Comparing to real-world, LOS analysis includes error sources such as coarse terrain data resolution, refraction of radio waves, and several ideal assumptions. In this research, exact LOS algorithm under assumption of constant earth curvature and error analysis of that is investigated. It proved that LOS algorithm under assumption of constant earth curvature has negligible error in mid-range guidance weapon system's scope.

Study about the Use of Airforce Robot in Next War (장차전의 공군용 로봇무기 활용성 연구)

  • Kim, Gyu-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.759-768
    • /
    • 2010
  • In next war, it will be expected that some requirement such as information acquisition, battlefield surveillance and control, increased power projection, precision attack by guided missile and electronic warfare may have special importance. The use of robot weapon system by Airforce will make up for some weak points of man based weapon system that Airforce currently has. And Airforce man/robot combined air vehicle weapon system can extend military operational theater and give its flexibility in next war where power, mobility and information should be all-in-one for military purpose.

Study to Optimize the Concurrent Spare Parts of Multiple Function Weapon System using Failure-Function Matrix (고장-기능 간 관계도를 이용한 다 기능 무기체계의 동시조달수리부속 최적화 연구)

  • Kim, Kyung-Rok;Choi, Hyo-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5260-5266
    • /
    • 2015
  • To develop weapon system, Concurrent Spare Parts(CSP) is one of the important somethings in terms of Intergrated Logistics System(ILS). CSP is very important to improve the availability of weapon system, and various research about CSP are performed. However, most of the research does not consider the effects between sub-item's failure and weapon system's multiple function. In other words, if sub-item's failure does not seriously influence weapon system's specific function, the point, not necessarily to replace sub-item, is not considered. Therefore, the method to calculate CSP based on above consideration is written by failure-function matrix in this paper. The study follows the procedure below. First, it's to define the operation and maintenance procedure of weapon system. Second, failure-function matrix is developed. Third, simulation model is desinged by input data. Finally, The quantity of CSP is calculated by simulation and evolution strategy, meta-model. This study suggests new research direction to calculate CSP.

A Study on the Militarization of Artificial Intelligence Technology in North Korea and the Development Direction of Corresponding Weapon System in South Korea (북한 인공지능 기술의 군사화와 우리 군의 대응 무기체계 발전방향 연구)

  • Kim, Min-Hyuk
    • Journal of Information Technology Services
    • /
    • v.20 no.1
    • /
    • pp.29-40
    • /
    • 2021
  • North Korea's science and technology policies are being pursued under strong leadership and control by the central government. In particular, a large part of the research and development of science and technology related to the Fourth Industrial Revolution in North Korea is controlled and absorbed by the defense organizations under the national defense-oriented policy framework, among which North Korea is making national efforts to develop advanced technologies in artificial intelligence and actively utilize them in the military affairs. The future weapon system based on AI will have superior performance and destructive power that is different from modern weapons systems, which is likely to change the paradigm of the future battlefield, so a thorough analysis and prediction of the level of AI militarization technology, the direction of development, and AI-based weapons system in North Korea is needed. In addition, research and development of South Korea's corresponding weapon systems and military science and technology are strongly required as soon as possible. Therefore, in this paper, we will analyze the level of AI technology, the direction of AI militarization, and the AI-based weapons system in North Korea, and discuss the AI military technology and corresponding weapon systems that South Korea military must research and develop to counter the North Korea's. The next study will discuss the analysis of AI militarization technologies not only in North Korea but also in neighboring countries in Northeast Asia such as China and Russia, as well as AI weapon systems by battlefield function, detailed core technologies, and research and development measures.

A study on Software Maintenance of Domestic Weapon System by using the Automatic Test Equipment

  • Chae, Il-Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.51-59
    • /
    • 2022
  • As the weapon system's dependence on software functions increased, software became a key factor in controlling the weapon system. In addition, as software development becomes more important domestically and internationally, software verification becomes an issue. The recent defense market has recognized this point and is demanding a plan for weapon system software maintenance. In this paper, we propose a weapon system software maintenance plan using Automatic Test Equipment. The specific method is to use a simulator to check the software function and identify failure cases. This is an effective way for developers to reduce the Total Corrective Maintenance Time(TCM) of the weapon system by reducing the time it takes to identify failure cases. It has been proven that the proposed Automatic Test Equipment can achieve software maintenance and excellent Maintainability and Operational Availability compared to the existing ones.