• Title/Summary/Keyword: Wax-based binder system

Search Result 7, Processing Time 0.022 seconds

Powder Injection Molding of Alumina Parts Using a Binder System Based in Paraffin Wax and High Density Polyethylene

  • Thomas-Vielma, P.;Cervera, A.;Levenfeld, B.;Varez, A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.207-208
    • /
    • 2006
  • In this experimental work, the development of a multicomponent binder system based on high density polyethylene (HDPE) and paraffin wax for Powder Injection Molding of Alumina $(Al_2O_3)$ parts was carried out. The optimum composition of the injection mixture was established through mixing torque measurements and a rheological study. The maximum powder loading was 58 vol%. The miscibility of organic components and the optimum injection temperature was evaluated by thermal characterization of binder and feedstock. The thermal debinding cycle was developed on the basis of thermogravimetrical analysis of the binder. After sintering the densities achieved were closed to 98% of the theoretical one.

  • PDF

Binder Removal by Supercritical $CO_2$ in Powder Injection Molded WC-Co (WC-Co계 분말사출성형에서 초임계$CO_2$에 의한 결합제 제거)

  • 김용호;임종성;이윤우;김소나;박종구
    • Journal of Powder Materials
    • /
    • v.8 no.2
    • /
    • pp.91-97
    • /
    • 2001
  • The conventional debinding process in metal injection molding is very long time-consuming and unfriendly environmental method. Especially, in such a case of injection molded parts from hard and fine metal powder, such as WC-Co, an extremely long period of time is necessary in the conventional slow binder removal process. On the other hand, supercritical debinding is thought to be the effective method which is appropriate to eliminate the aforementioned inconvenience in the prior art. The supercritical fluid has high diffusivity and density, it can penetrate quickly into the inside of the green metal bodies, and extract the binder. In this paper, super-critical debinding is compared with wicking debinding process. Wax-based binder system is used in this study. The binder removal rate in supercritical $CO_2$ have been measured at $65^{\circ}C$, 75$^{\circ}C$ in the pressure range from 20 MPa to 28 MPa. Pores and cracks in silver bodies after sintering were observed using SEM When the super-critical $CO_2$ debinding was carried out at 75$^{\circ}C$, almost all the wax (about 70 wt% of binder) was removed in 2 hours under 28 MPa and 2.5 hours under 25 MPa.

  • PDF

Debinding Process Using Supercritical Fluids in Metal Powder Injection Molding (분말사출성형에서 초임계유체를 이용한 탈지공정)

  • 김용호;임종성;이윤우;박종구
    • Journal of Powder Materials
    • /
    • v.10 no.1
    • /
    • pp.6-14
    • /
    • 2003
  • The purpose of the present study is to investigate the method decreasing debinding time as well as lowering operation condition than pure supercritical $CO_2$ debinding by using cosolvent or binary mixture of propane + $CO_2$. First method is to add cosolvent, such as n-hexane, DCM, methanol, 1-butanol, in supercritical $CO_2$. In case of adding cosolvent, we were found the addition of non-polar cosolvent (n-hexane) improves dramatically the binder removal rate (more than 2 times) compared with pure supercritical $CO_2$ debinding, second method is to use mixture of supercritical propane + $CO_2$, as solvent. In case of using mixture of supercritical propane + $CO_2$, the rate of debinding speeded up with increasing of pressure and concentration of propane at 348.15 K. It was found that addition of cosolvent (e.g., n-hexane, DCM) and binary mixture propane + $CO_2$ for supercritical solvent remarkably improved binder removal rate for the paraffin wax-based binder system, in comparison with using pure supercritical $CO_2$.

Development of a Yield Stress Measuring Technique for Powder Injection Molding Feedstocks (분말사출재의 항복응력 측정법 개발)

  • Rhee, Byung-Ohk;Lee, Jang-hoon
    • The Korean Journal of Rheology
    • /
    • v.11 no.1
    • /
    • pp.57-65
    • /
    • 1999
  • In order to measure yield stress of PIM feedstocks simply and effectively, a yield stress measuring technique was developed by a vane method. The vane method had an advantage that there was no wall-slip, while it had a drawback that it could not measure viscosity change at various shear rates. A Newtonian fluid was tested for the appropriateness of the measuring technique. The end effect of a vane was checked to produce an acceptable error. The torque peak has been considered to be developed at yielding of non-Newtonian fluids with yield stress. However, it was influenced very much by control system of the instrument so that the torque value at the stable region was taken to calculate yield stress. Torque at zero rotational speed was obtained by extrapolating the torque values at various speeds to remove the effect of the rotational drag. As general verification, yield stress of feedstocks made of Tungsten carbide powder with wax-based binder was measured at different temperatures and various powder concentrations.

  • PDF

Manufacturing of Micro Gas Bearing by Fe-Ni Nanopowder and Metal Mold Using LIGA (LIGA 금형몰드를 이용한 Fe-Ni계 나노분말의 초미세 가스베어링 제조)

  • Son, Soo-Jung;Cho, Young-Sang;Kim, Dae-Jung;Kim, Jong-Hyun;Chang, Suk-Sang;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.19 no.2
    • /
    • pp.140-145
    • /
    • 2012
  • This paper describes the manufacturing process of tilting pad gas bearing with a diameter of 5 mm and a length of 0.5-1 mm for power MEMS (Micro Electomechanical Systems) applications. The bearing compacts with nanopowder feedstock were prepared by Ni-metal mold with 2-mold system using LIGA process. The effect of the manufacturing conditions on sintering properties of nanopowder gas bearing was investigated. In this work, Fe-45 wt%Ni nanopowder with an average diameter of 30-50 nm size was used as starting material. After mixing the nanopowder and the wax-based binders, the amount of powder was controlled to obtain the certain mixing ratio. The nanopowder bearing compacts were sintered with 1-2 hr holding time under hydrogen atmospheres and under temperatures of $600^{\circ}C$ to $1,000^{\circ}C$. Finally, the critical batch of mixed powder system was found to be 70% particle fraction in total volume. The maximum density of the sintered bearing specimen was about 94% of theoretical density.

Development of Cermet Cutting Tool by Powder Injection Molding

  • Chung, Seong-Taek;Kwon, Young-Sam
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.493-494
    • /
    • 2006
  • Chip breaker of cutting tool is an important feature to enhance cutting performance. Powder injection molding process was used to produce a triangular-shape cermet grooving insert which has three chip breakers. Attrition milled cermet powders were mixed with wax-based binder system in continuous twin screw extruder. Three-plate injection mold with slide cores was used to produce injection-molded parts. After molding, solvent and thermal debinding was carried out. Sintering was conducted in a batch furnace with a graphite heater. The sintered parts satisfy the requirements of dimensional tolerances and material properties.

  • PDF

Optimization of Process Condition for Fe Nano Powder Injection Molding

  • Oh, Joo Won;Lee, Won Sik;Park, Seong Jin
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.223-228
    • /
    • 2017
  • Nanopowders provide better details for micro features and surface finish in powder injection molding processes. However, the small size of such powders induces processing challenges, such as low solid loading, high feedstock viscosity, difficulty in debinding, and distinctive sintering behavior. Therefore, the optimization of process conditions for nanopowder injection molding is essential, and it should be carefully performed. In this study, the powder injection molding process for Fe nanopowder has been optimized. The feedstock has been formulated using commercially available Fe nanopowder and a wax-based binder system. The optimal solid loading has been determined from the critical solid loading, measured by a torque rheometer. The homogeneously mixed feedstock is injected as a cylindrical green body, and solvent and thermal debinding conditions are determined by observing the weight change of the sample. The influence of the sintering temperature and holding time on the density has also been investigated. Thereafter, the Vickers hardness and grain size of the sintered samples have been measured to optimize the sintering conditions.