• Title/Summary/Keyword: Waves in Soil

Search Result 203, Processing Time 0.068 seconds

Seismic response of a rigid foundation embedded in a viscoelastic soil by taking into account the soil-foundation interaction

  • Messioud, Salah;Sbartai, Badreddine;Dias, Daniel
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.887-903
    • /
    • 2016
  • This study analyses the seismic response of a three-dimensional (3-D) rigid massless square foundation resting or embedded in a viscoelastic soil limited by rigid bedrock. The foundation is subjected to harmonic oblique seismic waves P, SV, SH and R. The key step is the characterization of the soil-foundation interaction by computing the impedance matrix and the input motion matrix. A 3-D frequency boundary element method (BEM) in conjunction with the thin layer method (TLM) is adapted for the seismic analysis of the foundation. The dynamic response of the rigid foundation is solved from the wave equations by taking into account the soil-foundation interaction. The solution is formulated using the frequency BEM with the Green's function obtained from the TLM. This approach has been applied to analyze the effect of soilstructure interaction on the seismic response of the foundation as a function of the kind of incident waves, the angles of incident waves, the wave's frequencies and the embedding of foundation. The parametric results show that the non-vertical incident waves, the embedment of foundation, and the wave's frequencies have important impact on the dynamic response of rigid foundations.

Application of non-destructive method for evaluation of soil nail length (쏘일네일의 길이평가를 위한 비파괴 기법의 적용)

  • Kim, Ki-Hong;Kim, Nag-Young;Lee, Jong-Sub;Yu, Jung-Doung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.75-90
    • /
    • 2015
  • As soil nails support a ground by the friction between nails and soils being reinforced, the length of soil nails is important factor for a ground stability. Thus, the soil nail length has to be accurately evaluated in order to secure a ground stability. The goal of this study is to suggest the applicability of the non-destructive method as the basic research for the evaluation of the soil nail length. First, the elastic and electromagnetic waves are adopted to select an applicable method for the soil nails connected by the coupler. Test results show that while the ultrasonic waves are not detected due to the coupler, the electromagnetic waves are free for the influence of the coupler. Second, electromagnetic waves are measured for combined soil nails with the length of 1 m~15 m for the investigation of the characteristics of electromagnetic waves. The travel time of the electromagnetic wave increases with an increase in the soil nail length. In addition, the ground cable is used to apply the electromagnetic waves to pre-installed soil nails. Test results show that the travel time of the electromagnetic wave by using the ground cable increases with an increase in soil nail length. This study demonstrates that the electromagnetic wave may be a promising method for the evaluation of the soil nail length.

Ultrasonic flushing 기법에 의한 유류오염토양의 복원에 관한 실험연구

  • Jeong, Ha-Ik;Oh, In-Gyu;Kim, Sang-Geun;Lee, Yong-Su;Yoo, Jun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.13-17
    • /
    • 2002
  • Ultrasonic waves have several mechanical, chemical, and biological effects on a saturated soil medium. Their mechanical effects, popularly known as cavitation. Cavitation is the rapid and repeated formation, and resulting implosion, of imcrobubbles in a liquid, resulting in the propagation of microscopic shock waves. In a soil-liquid system, their mechanical effects generate high differntial fluid-particle velocities and microscopic shock waves. The velocity perturbations are capable of dislodging oil in the system by overcoming the forces binding oil to sand particles. In this study, a series of laboratory experiments involving the simple flushing and ultrasonic flushing were carried out. An increase in permeability and oil removal rate were observed in ultrasonic flushing tests. Some practical implications of these results are discussed in terms of technical feasibility of in situ implementation of ultrasonics.

  • PDF

Harmonic seismic waves response of 3D rigid surface foundation on layer soil

  • Messioud, Salah;Sbartai, Badredine;Dias, Daniel
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.109-118
    • /
    • 2019
  • This study, analyses the seismic response for a rigid massless square foundation resting on a viscoelastic soil layer limited by rigid bedrock. The foundation is subjected either to externally applied forces or to obliquely incident seismic body or surface harmonic seismic waves P, SV and SH. A 3-D frequency domain BEM formulation in conjunction with the thin layer method (TLM) is adapted here for the solution of elastodynamic problems and used for obtained the seismic response. The mathematical approach is based on the method of integral equations in the frequency domain using the formalism of Green's functions (Kausel and Peck 1982) for layered soil, the impedance functions are calculated by the compatibility condition. In this study, The key step is the characterization of the soil-foundation interaction with the input motion matrix. For each frequency the impedance matrix connects the applied forces to the resulting displacement, and the input motion matrix connects the displacement vector of the foundation to amplitudes of the free field motion. This approach has been applied to analyze the effect of soil-structure interaction on the seismic response of the foundation resting on a viscoelastic soil layer limited by rigid bedrock.

Attenuation of Fundamental Longitudinal Guided Wave Mode in Steel Pipes Embedded in Soil

  • Lee, Ju-Won;Shin, Sung-Woo;Na, Won-Bae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.539-547
    • /
    • 2010
  • In this study, characteristics of the fundamental longitudinal guided wave mode, L(0,1), which is a usual mode employed in the inspection of the above-ground pipe, of the buried pipe were numerically investigated considering property changes in the surrounding soil. Results showed that soil conditions are significantly affecting the attenuation of L(0,1) mode in the pipe embedded in soil. Especially, if the soil is partially saturated, the attenuation of L(0,1) mode is larger and is very similar regardless of the degree of water saturation in the surrounding soil. However, when the soil is fully saturated, the attenuation of L(0,1) mode is less and show different trend with its partially saturated counterparts.

A study on new soil investigation method using seismic waves generated by dynamic penetration blows

  • Saito Hideki
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.3-9
    • /
    • 2005
  • In order to obtain more reliable data for the information on the ground, a new site Investigation method is proposed, in which seismic waves (S-waves) generated by the Swedish Ram Sounding Test (SRS) are used. It is indicated that the energy transferred from the hammer to the rod in SRS's is much more stable, compared to SPT's. A series of SRS with measurements of seismic waves at the ground surface were carried out to clarify the characteristics of seismic wave propagation in the ground. As the results of comparison between seismic S-wave amplitudes and $N_d$ (blow count for 20 cm penetration in SRS), it was found that amplitudes of S-waves generated by SRS correlate well with $N_d$. The amplitude of the S-wave is thought to be more adequate parameter for the soil strength and rigidity than $N_d$.

  • PDF

A quasi-static finite element approach for seismic analysis of tunnels considering tunnel excavation and P-waves

  • Zhao, Wusheng;Zhong, Kun;Chen, Weizhong;Xie, Peiyao
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.549-559
    • /
    • 2022
  • The quasi-static finite element (FE) approaches are widely used for the seismic analysis of tunnels. However, the conventional quasi-static approaches may cause significant deviations when the tunnel excavation process is simulated prior to the quasi-static analysis. In addition, they cannot account for vertical excitations. Therefore, this paper first highlights the limitations of conventional approaches. A hybrid quasi-static FE approach is subsequently proposed and extensively validated for various conditions. The hybrid approach is simple and not time consuming, and it can be used for the preliminary seismic design of tunnels, especially when the tunnel excavation and vertically propagating P-waves are considered.

Investigation on the Effect of Stress Waves on Soil Flushing (토양세척에 있어서 탄성파의 효과에 관한 연구)

  • 김영욱;김지형;이인모
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.37-40
    • /
    • 2000
  • Acoustically enhanced soil flushing method is a newly developed in-situ remediation technique. However, there has not been an analytical method that can be used to evaluate the effectiveness of ultrasonic wave under different conditions. This study was undertaken to investigate the degree of enhancement in contaminant removal due to ultrasonic energy on the soil flushing method. The test conditions included different levels of ultrasonic power and hydraulic gradient. The test soils were Ottawa sand, a fine aggregate, and a natural soil, and the surrogate contaminant was a Crisco Vegetable Oil. The test results showed that sonication could increase contaminant removal significantly. Increasing sonication power increased pollutant removal. The faster the flow is, the smaller the degree of enhancement will be. The pollutants in dense soils are more difficult to be removed than in loose soils.

  • PDF

Infinite Elements for Soil-Structure Interaction Anaysis (지반-구조물의 상호작용 해석을 위한 무한요소)

  • 양신추;윤정방
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.04a
    • /
    • pp.22-27
    • /
    • 1989
  • This paper presents a study of soil-structure interaction problems using infinite elements. The infinite elements are formulated for homogeneous and layered soil media, based on approximate expressions for three components of propagating waves, namely Rayleigh, compressive and shear waves. The integration scheme which was proposed for problems with single wave component by Zienkiewicz is expanded to the multi-wave problem. Verifications are carried out on rigid circular footings which are placed on and embedded in elastic half space. Numerical analysis is performed for a containment structure of a nuclear power plant subjected seismic excitation.

  • PDF

Seismic Stability Evaluation of Sand Ground with Organic Soil by Using Shaking Table Test (진동대 시험을 이용한 유기질토가 협재된 모래지반의 내진 안정성 평가)

  • Yongjin Chung;Youngchul Baek;Donghyuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.5
    • /
    • pp.13-20
    • /
    • 2023
  • The Gangneung region has an environment suitable for the formation of organic soil, and there is an alluvial layer in which sedimentary sand layers are distributed on the upper and lower parts of the organic soil. In order to evaluate the seismic safety of the railway roadbed passing through the Gangneung area, a railway roadbed and ground model considering the similarity ratio was fabricated, a shaking table test was conducted, and the seismic stability was evaluated by comparing the effective stress analysis results. The applied seismic waves were artificial seismic waves, Gyeongju seismic waves, Borah seismic waves, Nahanni seismic waves, and Tabas seismic waves. It became. Due to the ground reinforcement effect by jet grouting applied to the lower ground of the new roadbed, the displacement of the new roadbed was found to be reduced from a minimum of 33.7% to a maximum of 56.7% compared to the existing roadbed. The shaking table test results were verified by effective stress analysis using the Finn model of the Flac program, and showed a similar trend to the shaking table test values.