• Title/Summary/Keyword: Wavenumber

Search Result 204, Processing Time 0.022 seconds

Propagation of Structural Waves along Waveguides with Non-Uniformities Using Wavenumber Domain Finite Elements (국부적 불연속을 갖는 도파관을 따라 전파되는 파동에 대한 파수 영역 유한 요소 해석)

  • Ryue, Jungsoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.191-199
    • /
    • 2014
  • Wave reflection and transmission characteristics in waveguides are an important issue in many engineering applications. A combined spectral element and finite element (SE/FE) method is used to investigate the effects of local non-uniformities but limited at relatively low frequencies because the SE is formulated by using a beam theory. For higher frequency applications, a method named a combined spectral super element and finite element (SSE/FE) method was presented recently, replacing spectral elements with spectral super elements. This SSE/FE approach requires a long computing time due to the coupling of SSE and FE matrices. If a local non-uniformity has a uniform cross-section along its short length, the FE part could be further replaced by SSE, which improves performance of the combined SSE/FE method in terms of the modeling effort and computing time. In this paper SSEs are combined to investigate the characteristics of waves propagating along waveguides possessing geometric non-uniformities. Two models are regarded: a rail with a local defect and a periodically ribbed plate. In the case of the rail example, firstly, the results predicted by a combined SSE/FE method are compared with those from the combined SSEs in order to justify that the combined SSEs work properly. Then the SSEs are applied to a ribbed plate which has periodically repeated non-uniformities along its length. For the ribbed plate, the propagation characteristics are investigated in terms of the propagation constant.

Finding Optimal Installation Depth of Strong Motion Seismometers for Seismic Observation (지진 관측을 위한 최적 설치심도 조사 방법 연구)

  • Seokho Jeong;Doyoon Lim ;Eui-Hong Hwang;Jae-Kwang Ahn
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.2
    • /
    • pp.31-40
    • /
    • 2023
  • We installed temporary strong motion seismometers at the ground surface, 1 m, 2 m, and 9 m at an existing seismic station that houses permanent seismometers installed at 20 m and 100 m, to investigate the influence of installation depth on the recorded ambient and anthropogenic noise level and the characteristics of earthquake signals. Analysis of the ambient noise shows that anthropogenic noise dominates where vibration period T < 1 s at the studied site, whereas wind speed appears to be strongly correlated with the noise level at T > 1 s. Frequency-wavenumber analysis of 2D seismometer array suggests that ambient noise in short periods are predominantly body waves, rather than surface waves. The level of ambient noise was low at 9 m and 20 m, but strong amplification of noise level at T < 0.1 s was observed at the shallow seismometers. Both the active-source test result and the recorded earthquake data demonstrated that the signal level is decreased with the increase of depth. Our result also shows that recorded motions at the ground and 1 m are strongly amplified at 20 Hz (T = 0.05 s), likely due to the resonance of the 3 m thick soil layer. This study demonstrates that analysis of ambient and active-source vibration may help find optimal installation depth of strong motion seismometers. We expect that further research considering various noise environments and geological conditions will be helpful in establishing a guideline for optimal installation of strong motion seismometers.

Estimate on the Crustal Thickness from Using Multi-geophysical Data Sets and Its Comparison to Heat Flow Distribution of Korean Peninsula (다양한 지구물리 자료를 통해 얻은 한반도의 지각두께 예측과 지열류량과의 비교)

  • Choi, Soon-Young;Kim, Hyung-Rae;Kim, Chang-Hwan;Park, Chan-Hong;Suh, Man-Chul
    • Economic and Environmental Geology
    • /
    • v.44 no.6
    • /
    • pp.493-502
    • /
    • 2011
  • We study the deep structure of Korean Peninsula by estimating Moho depth and crustal thickness from using land and oceanic topography and free-air gravity anomaly data. Based on Airy-Heiskanen isostatic hypothesis, the correlated components between the terrain gravity effects and free-air gravity anomalies by wavenumber correlation analysis(WCA) are extracted to estimate the gravity effects that will be resulted from isostatic compensation for the area. With the resulting compensated gravity estimates, Moho depth that is a subsurface between the crust and mantle is estimated by the inversion in an iterative method with the constraints of 20 seismic depth estimates by the receiver function analysis, to minimize the uncertainty of non-uniqueness. Consequently, the average of the resulting crustal thickness estimate of Korean Peninsula is 32.15 km and the standard deviation is 3.12 km. Moho depth of South Korea estimated from this study is compared with the ones from the previous studies, showing they are approximately consistent. And the aspects of Moho undulation from the respective study are in common deep along Taebaek Mountains and Sobaek Mountains and low depth in Gyeongsang Basin relatively. Also, it is discussed that the terrain decorrelated free-air gravity anomalies inferring from the intracrustal characteristics of the crust are compared to the heat flow distributions of South Korea. The low-frequency components of terrain decorrelated Free-air gravity anomalies are highly correlated with the heat flow data, especially in the area of Gyeongsang basin where high heat flow causes to decrease the density of the rocks in the lower crust resulting in lowering the Moho depth by compensation. This result confirms that the high heat sources in this area coming from the upper mantle by Kim et al. (2008).

The study of quantitative analytical method for pH and moisture of Hanji record paper using non-destructive FT-NIR spectroscopy (비파괴 분석 방법인 푸리에 변환 근적외선 분광 분석을 이용한 한지 기록물의 산성도 및 함수율 정량 분석 연구)

  • Shin, Yong-Min;Park, Soung-Be;Lee, Chang-Yong;Kim, Chan-Bong;Lee, Seong-Uk;Cho, Won-Bo;Kim, Hyo-Jin
    • Analytical Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.121-126
    • /
    • 2012
  • It is essential to evaluate the quality of Hanji record paper without damaging the record paper by previous destructive methods. The samples were Hanji record paper produced in the 1900s. Near-infrared (NIR) spectrometer was used as a non destructive method for evaluating the quality of record papers. Fourier transform (FT) spectrometer was used with 12,500 to 4,000 $cm^{-1}$ wavenumber range for quantitative analysis and it has high accuracy and good signal-to-noise ratio. The acidity and moisture content of Hanji record paper were measured by integrating sphere as diffuse reflectance type. The acidity (pH) of chemical factors as a quality evaluated factor of Hanji was correlated to NIR spectrum. The NIR spectrum was pretreated to obtain the coefficients of optimum correlation. Multiplicative scatter correction (MSC) and First derivative of Savitzky-Golay were used as pretreated methods. The coefficients of optimum correlation were calculated by PLSR (partial least square regression). The correlation coefficients ($R^2$) of acidity had 0.92 on NIR spectra without pretreatment. Also the standard error of prediction (SEP) of pH was 0.24. And then the NIR spectra with pretreatment would have better correlation coefficient ($R^2$ = 0.98) and 0.19 as SEP on pH. For moisture contents, the linearity correlation without pretreatment was higher than the case with pretreatment (MSC, $1^{st}$ derivative). As the best result, the $R^2$ was 0.99 and SEP was 0.45. This indicates that it is highly proper to evaluate the quality of Hanji record papers speedily with integrated sphere and FT NIR analyzer as a non-destructive method.