• 제목/요약/키워드: Wavelet feature vector

검색결과 101건 처리시간 0.023초

웨이블릿 특징 벡터 기반 SVM을 이용한 ERP 검출 알고리즘에 관한 연구 (Study on ERP Detection Algorithm Using SVM with wavelet feature vector)

  • 이영석
    • 한국정보전자통신기술학회논문지
    • /
    • 제10권1호
    • /
    • pp.9-15
    • /
    • 2017
  • 본 연구에서는 웨이블릿 평면에서 대역 분할된 데이터를 특징 벡터로 하는 SVM을 이용한 ERP 검출 실험을 하였다. 뇌파 신호는 SCSD의 SCCN 뇌파 데이터베이스에 있는 시각적 자극(visual stimulus)을 이용하여 발생한 ERP를 사용하였다. 검출 알고리즘을 이용한 실험은 기존의 뇌파의 주파수 분석 데이터를 특징 벡터로 하는 방법과 웨이블릿 평면에서 전개된 뇌파 데이터를 특징 벡터로 하는 SVM 검출 방식을 비교하였다. 실험 결과는 기존의 특징 벡터를 이용하는 방법에 비하여 웨이블릿 평면에서 전개된 특징 벡터를 이용하는 SVM 방식이 EPR의 검출 율에서 약 10%의 향상된 성능을 나타내었다. 실험 결과에 대한 분석에서 웨이블릿 평면 특징 벡터를 적용한 SVM 실험 결과에서 검출율이 향상된 이유로서 대뇌 피질 활동이 ERP의 주파수 대역에 따른 활동성의 증감 특성과 ERP의 웨이블릿 평면 대역별 특성에 대한 비교 분석을 수행하였다.

Iris Recognition Based on a Shift-Invariant Wavelet Transform

  • Cho, Seongwon;Kim, Jaemin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권3호
    • /
    • pp.322-326
    • /
    • 2004
  • This paper describes a new iris recognition method based on a shift-invariant wavelet sub-images. For the feature representation, we first preprocess an iris image for the compensation of the variation of the iris and for the easy implementation of the wavelet transform. Then, we decompose the preprocessed iris image into multiple subband images using a shift-invariant wavelet transform. For feature representation, we select a set of subband images, which have rich information for the classification of various iris patterns and robust to noises. In order to reduce the size of the feature vector, we quantize. each pixel of subband images using the Lloyd-Max quantization method Each feature element is represented by one of quantization levels, and a set of these feature element is the feature vector. When the quantization is very coarse, the quantized level does not have much information about the image pixel value. Therefore, we define a new similarity measure based on mutual information between two features. With this similarity measure, the size of the feature vector can be reduced without much degradation of performance. Experimentally, we show that the proposed method produced superb performance in iris recognition.

Speech Query Recognition for Tamil Language Using Wavelet and Wavelet Packets

  • Iswarya, P.;Radha, V.
    • Journal of Information Processing Systems
    • /
    • 제13권5호
    • /
    • pp.1135-1148
    • /
    • 2017
  • Speech recognition is one of the fascinating fields in the area of Computer science. Accuracy of speech recognition system may reduce due to the presence of noise present in speech signal. Therefore noise removal is an essential step in Automatic Speech Recognition (ASR) system and this paper proposes a new technique called combined thresholding for noise removal. Feature extraction is process of converting acoustic signal into most valuable set of parameters. This paper also concentrates on improving Mel Frequency Cepstral Coefficients (MFCC) features by introducing Discrete Wavelet Packet Transform (DWPT) in the place of Discrete Fourier Transformation (DFT) block to provide an efficient signal analysis. The feature vector is varied in size, for choosing the correct length of feature vector Self Organizing Map (SOM) is used. As a single classifier does not provide enough accuracy, so this research proposes an Ensemble Support Vector Machine (ESVM) classifier where the fixed length feature vector from SOM is given as input, termed as ESVM_SOM. The experimental results showed that the proposed methods provide better results than the existing methods.

웨이블릿변환과 상관관계를 이용한 지문의 분류 및 인식 (Fingerprint Classification and Identification Using Wavelet Transform and Correlation)

  • 이석원;남부희
    • 제어로봇시스템학회논문지
    • /
    • 제6권5호
    • /
    • pp.390-395
    • /
    • 2000
  • We present a fingerprint identification algorithm using the wavelet transform and correlation. The wavelet transform is used because of its simple operation to extract fingerprint minutiaes features for fingerprint classification. We perform the rowwise 1-D wavelet transform for a $256\times256$ fingerprint image to get a $1\times256$ column vector using the Haar wavelet and repeat 1-D wavelet transform for a 1$\times$256 column vector to get a $1\times4$ feature vector. Using PNN(Probabilistic Neural Network), we select the possible candidates from the stored feature vectors for fingerprint images. For those candidates, we compute the correlation between the input binary image and the target binary image to find the most similar fingerprint image. The proposed algorithm may be the key to a low cost fingerprint identification system that can be operated on a small computer because it does not need a large memory size and much computation.

  • PDF

PR-QMF Wavelet Transform을 이용한 천이 수중 신호의 특징벡타 추출 기법 (Feature Vector Extraction Method for Transient Sonar Signals Using PR-QMF Wavelet Transform)

  • 정용민;최종호;조용수;오원천
    • 한국음향학회지
    • /
    • 제15권1호
    • /
    • pp.87-92
    • /
    • 1996
  • 수중에서 발생하는 천이 신호는 강한 비정재성을 갖고 다양한 천이 신호원이 함께 존재하기 때문에 분석 및 식별에 어려움이 있다. 본 논문에서는 디지털 신호처리 기법을 천이 신호의 분석에 적용하여 특징벡타를 추출하는 기법에 대하여 논하고 기존의 고전적인 방법보다 더 좋은 인식률을 얻을 수 있는 wavelet 변환을 이용한 특징벡타 추출 방법을 제안한다. 모의실험을 통하여 제안된 방법이 고전적이 방법보다 더 적은 특징 벡타 수로도 좋은 성능을 보임을 확인한다. 특히, Daubechies 계수를 필터계수로 하는 PR-QMF wavelet 변환을 이용한 특징벡타 추출 방법은 구현방법이 용이하고 잡음 환경 하에서도 우수한 성능을 보인다.

  • PDF

Fault Diagnosis of Wind Power Converters Based on Compressed Sensing Theory and Weight Constrained AdaBoost-SVM

  • Zheng, Xiao-Xia;Peng, Peng
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.443-453
    • /
    • 2019
  • As the core component of transmission systems, converters are very prone to failure. To improve the accuracy of fault diagnosis for wind power converters, a fault feature extraction method combined with a wavelet transform and compressed sensing theory is proposed. In addition, an improved AdaBoost-SVM is used to diagnose wind power converters. The three-phase output current signal is selected as the research object and is processed by the wavelet transform to reduce the signal noise. The wavelet approximation coefficients are dimensionality reduced to obtain measurement signals based on the theory of compressive sensing. A sparse vector is obtained by the orthogonal matching pursuit algorithm, and then the fault feature vector is extracted. The fault feature vectors are input to the improved AdaBoost-SVM classifier to realize fault diagnosis. Simulation results show that this method can effectively realize the fault diagnosis of the power transistors in converters and improve the precision of fault diagnosis.

Gabor 특징과 웨이브렛 영역의 BDIP와 BVLC 특징을 이용한 질감 특징 기반 언어 인식 (Texture Feature-Based Language Identification Using Gabor Feature and Wavelet-Domain BDIP and BVLC Features)

  • 장익훈;이우신;김남철
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.76-85
    • /
    • 2011
  • 본 논문에서는 Gabor 특징과 웨이브렛 영역의 BDIP와 BVLC 특징을 이용한 질감 특징 기반 언어 인식 방법을 제안한다. 제안된 방법에서는 먼저 시험 영상에 Gabor 변환과 웨이브렛 변환을 적용한다. 웨이브렛 영역의 상세 대역에는 Donoho의 연역치화를 적용하여 잡음을 제거한다. 이어서 Gabor 영상에는 크기 연산자를 적용하고 웨이브렛 부대역에는 BDIP와 BVLC 연산자를 적용한다. 그런 다음 Gabor 크기 영상과 BDIP, BVLC 부대역에 대하여 통계치를 계산하여 그 결과들을 벡터화하고 융합하여 특징 벡터로 사용한다. 분류 단계에서는 얼굴 인식에 주로 사용되는 WPCA를 분류기로 하여 시험 특징 벡터와 가장 유사한 학습 특징 벡터를 찾는다. 실험 결과 제안된 방법은 실험 문서 영상 DB에 대하여 비교적 낮은 특징 벡터 차원으로 매우 우수한 언어 인식 성능을 보여준다.

특징벡터 결합과 신경회로망을 이용한 전력외란 식별 (Classification of Power Quality Disturbances Using Feature Vector Combination and Neural Networks)

  • 남상원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.671-674
    • /
    • 1997
  • The objective of this paper is to present a new feature-vector extraction method for the automatic detection and classification of power quality(PQ) disturbances, where FIT, DWT(Discrete Wavelet Transform), and Fisher's criterion are utilized to extract an appropriate feature vector. In particular, the proposed classifier consists of three parts: i.e., (i) automatic detection of PQ disturbances, where the wavelet transform and signal power estimation method are utilized to detect each disturbance, (ii) feature vector extraction from the detected disturbance, and (iii) automatic classification, where Multi-Layer Perceptron(MLP) is used to classify each disturbance from the corresponding extracted feature vector. To demonstrate the performance and applicability of the proposed classification algorithm, some test results obtained by analyzing 10-class power quality disturbances are also provided.

  • PDF

위치이동에 무관한 웨이블릿 변환을 이용한 패턴인식 (Patterns Recognition Using Translation-Invariant Wavelet Transform)

  • 김국진;조성원;김재민;임철수
    • 한국지능시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.281-286
    • /
    • 2003
  • 웨이블릿 변환(Wavelet Transform)은 공간-주파수 영역에서 신호의 국소특성을 효율적으로 구현할 수 있다 하지만, 웨이블릿 변환을 패턴 인식을 위한 특징 추출에 적용할 경우, 입력 신호의 위치 이동에 따라 추출된 특징 값이 변화하게 되어 인식률이 낮아지는 결함이 있다. 본 논문에서는 웨이블릿 변환을 패턴 인식에 적용할 경우 발생하는 입력 신호의 위치 이동에 따른 문제점을 보완하여 노이즈에 강인한 홍채인식 알고리즘을 제안한다. 실험을 통하여 제안한 알고리즘의 우수성을 보여 준다.

Theoretical and experimental study on damage detection for beam string structure

  • He, Haoxiang;Yan, Weiming;Zhang, Ailin
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.327-344
    • /
    • 2013
  • Beam string structure (BSS) is introduced as a new type of hybrid prestressed string structures. The composition and mechanics features of BSS are discussed. The main principles of wavelet packet transform (WPT), principal component analysis (PCA) and support vector machine (SVM) have been reviewed. WPT is applied to the structural response signals, and feature vectors are obtained by feature extraction and PCA. The feature vectors are used for training and classification as the inputs of the support vector machine. The method is used to a single one-way arched beam string structure for damage detection. The cable prestress loss and web members damage experiment for a beam string structure is carried through. Different prestressing forces are applied on the cable to simulate cable prestress loss, the prestressing forces are calculated by the frequencies which are solved by Fourier transform or wavelet transform under impulse excitation. Test results verify this method is accurate and convenient. The damage cases of web members on the beam are tested to validate the efficiency of the method presented in this study. Wavelet packet decomposition is applied to the structural response signals under ambient vibration, feature vectors are obtained by feature extraction method. The feature vectors are used for training and classification as the inputs of the support vector machine. The structural damage position and degree can be identified and classified, and the test result is highly accurate especially combined with principle component analysis.