• Title/Summary/Keyword: Wavelength filtering devices

Search Result 6, Processing Time 0.023 seconds

Polymer-waveguide Bragg-grating Devices Fabricated Using Phase-mask Lithography

  • Park, Tae-Hyun;Kim, Sung-Moon;Oh, Min-Cheol
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.401-407
    • /
    • 2019
  • Polymeric optical waveguide devices with Bragg gratings have been investigated, for implementing tunable lasers and wavelength filters used in wavelength-division-multiplexed optical communication systems. Owing to the excellent thermo-optic effect of these polymers, wavelength tuning is possible over a wide range, which is difficult to achieve using other optical materials. In this study the phase-mask technology, which has advantages over the conventional interferometeric method, was introduced to facilitate the fabrication of Bragg gratings in polymeric optical waveguide devices. An optical setup capable of fabricating multiple Bragg gratings simultaneously on a 4-inch silicon wafer was constructed, using a 442-nm laser and phase mask. During fabrication, some of the diffracted light in the phase mask was totally reflected inside the mask, which affected the quality of the Bragg grating adversely, so experiments were conducted to solve this issue. To verify grating uniformity, two types of wavelength-filtering devices were fabricated using the phase-mask lithography, and their reflection and transmission spectra were measured. From the results, we confirmed that the phase-mask method provides good uniformity, and may be applied for mass production of polymer Bragg-grating waveguide devices.

Large-Scale Vortical Structure of Turbulent Separation Bubble Affected by Unsteady Wake (비정상 후류가 난류박리기포의 응집구조에 미치는 영향)

  • Jeon, Se-Jong;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1218-1225
    • /
    • 2002
  • Large-scale vortical structure of a turbulent separation bubble affected by unsteady wake is essential to understand flow mechanisms in various fluid devices. A spoked-wheel type of wake generator provides unsteady wake, which modifies the turbulent separation bubble significantly by changing rotation directions and passing frequencies. A detailed mechanism of vortex shedding from the separation bubble with unsteady wake is analyzed by taking a conditional average with spatial box filtering, which spatially integrates measured signals at pre-determined wavelength. A convecting nature of the large-scale vortical structure is analyzed carefully. Spatial evolution of the large-scale vortical structure with frequency variance is also exemplified.

Fabrication and optical properties measurement of the optical filters utilizing fiber-to-planar waveguide coupler (광섬유-평면도파로 광 결합기를 이용한 광 필터 제작과 특성 측정)

  • 김광택;이소영;손경락;이종훈;송재원;이상재;김시홍;강신원
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.5
    • /
    • pp.419-423
    • /
    • 1999
  • Optical filters utilizing the evanescent filed coupling between the side polished fiber and polymer planar waveguide were fabricated and optical properties of the devices were measured. A scheme for reducing polarization dependent properties of the device was proposed and demonstrated experimentally. Our measurement results showed that resonance wavelengths and filtering depth of the optical filters can be determined by adjusting thickness of planar waveguide and polishing depth of the fiber. The device fabrication procedure including fiber polishing steps and formation of polymer planar waveguide were described. The optical characteristics of fabricated optical filers were that 3 dB bandwidth was 15 nm, the resonance wavelength difference between the TE and TM polarized response was less then 2 nm, and insertion loss was less then 0.2 dB. The measured resonance wavelength drift dut to the variation of ambient temperature was -0.35 nm/$^{\circ}C$.

  • PDF

Design of Polarization-Insensitive Directional Couplers and Multimode Interference Couplers Integrated with Bragg Grating Waveguide (Bragg 격자구조가 집적된 편광 무의존성 방향성 결합기와 다중모드 간섭 결합기의 설계)

  • Ho, Kwang-Chun
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.295-302
    • /
    • 2007
  • This paper presents a rigorous comparison of the design characteristics of polarization-insensitive directional coupler (DC) and multimode interference (MMI) coupler based on rib type waveguides, by using longitudinal modal transmission-line theory (L-MTLT). It shows that the multimode mixing and interference property of MMI can be structurally designed through the continuous evolution of the two-mode coupling property of DC. It also compares and analyzes the coupling efficiency along with the coupling length and the wavelength between polarization-insensitive DC and MMI. From the design properties obtained, it demonstrates for the first time the integration of polarization-insensitive DC or MMI with a Bragg grating and evaluates precisely the filtering characteristics. The numerical results reveal that the DC, as long as it is designed to have the same coupling length for TE and TM modes, has better performance than the MMI in polarization-insensitive filtering behaviour. However, it shows that the MMI with much less coupling length than DC is preferred in the miniaturization of integrated devices.

Design and Fabrication of Triple-coupler Ring Resonator Filter (삼중 결합 링 공진기 필터의 설계 및 제작)

  • Lee, Young-Sik;Chung, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.1
    • /
    • pp.40-45
    • /
    • 2011
  • Design and fabrication of a TCRR (Triple-coupler Ring Resonator) filter which can provide a doubled FSR (Free Spectral Range) compared with a conventional DCRR (Double-coupler Ring Resonator) filter, are discussed. Through the use of a polymer material with a good thermo-optic property and with high contrast between core and cladding polymer, a compact TCRR filter composed of straight and curved buried waveguides of small radius is designed and fabricated. The transmission characteristics from the through and drop ports are measured using a tunable laser and a fiber array block, and the FSR is observed to be 4.4 nm, about twice that of DCRR filter, and almost the same as that obtained from the analysis using a transfer matrix method.

Analysis of Subwavelength Metal Hole Array Structure for the Enhancement of Quantum Dot Infrared Photodetectors

  • Ha, Jae-Du;Hwang, Jeong-U;Gang, Sang-U;No, Sam-Gyu;Lee, Sang-Jun;Kim, Jong-Su;Krishna, Sanjay;Urbas, Augustine;Ku, Zahyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.334-334
    • /
    • 2013
  • In the past decade, the infrared detectors based on intersubband transition in quantum dots (QDs) have attracted much attention due to lower dark currents and increased lifetimes, which are in turn due a three-dimensional confinement and a reduction of scattering, respectively. In parallel, focal plane array development for infrared imaging has proceeded from the first to third generations (linear arrays, 2D arrays for staring systems, and large format with enhanced capabilities, respectively). For a step further towards the next generation of FPAs, it is envisioned that a two-dimensional metal hole array (2D-MHA) structures will improve the FPA structure by enhancing the coupling to photodetectors via local field engineering, and will enable wavelength filtering. In regard to the improved performance at certain wavelengths, it is worth pointing out the structural difference between previous 2D-MHA integrated front-illuminated single pixel devices and back-illuminated devices. Apart from the pixel linear dimension, it is a distinct difference that there is a metal cladding (composed of a number of metals for ohmic contact and the read-out integrated circuit hybridization) in the FPA between the heavily doped gallium arsenide used as the contact layer and the ROIC; on the contrary, the front-illuminated single pixel device consists of two heavily doped contact layers separated by the QD-absorber on a semi-infinite GaAs substrate. This paper is focused on analyzing the impact of a two dimensional metal hole array structure integrated to the back-illuminated quantum dots-in-a-well (DWELL) infrared photodetectors. The metal hole array consisting of subwavelength-circular holes penetrating gold layer (2DAu-CHA) provides the enhanced responsivity of DWELL infrared photodetector at certain wavelengths. The performance of 2D-Au-CHA is investigated by calculating the absorption of active layer in the DWELL structure using a finite integration technique. Simulation results show the enhanced electric fields (thereby increasing the absorption in the active layer) resulting from a surface plasmon, a guided mode, and Fabry-Perot resonances. Simulation method accomplished in this paper provides a generalized approach to optimize the design of any type of couplers integrated to infrared photodetectors.

  • PDF