• Title/Summary/Keyword: Wavelength Modulating

Search Result 15, Processing Time 0.021 seconds

Fabrication of Electrochromic Devices Using Double Layer Conducting Polymers for Infrared Transmittance Control

  • Kim, Jin Kyu;Koh, Jong Kwan;Kim, Bumsoo;Jeon, Seokwoo;Ahn, Joonmo;Kim, Jong Hak
    • Rapid Communication in Photoscience
    • /
    • v.3 no.2
    • /
    • pp.32-34
    • /
    • 2014
  • We report the performance improvement of electrochromic devices for modulating the transmittance contrast of long wavelength infrared light between 1.5 and 5.0 ${\mu}m$ based on a double layer of conducting polymers. The device, fabricated with poly(3-hexylthiophene) (P3HT) and poly(3,4-ethylenedioxythiophene) (PEDOT) as the first and second layers, respectively, showed an transmittance contrast of 60% with a response rate under 5 s, which is greater than the transmittance contrast of cells based on only P3HT or PEDOT (approximately 40%).

Optical Acetylene Gas Detection using a Photonic Bandgap Fiber and Fiber Bragg Grating (광섬유 격자와 포토닉 밴드갭 광섬유를 이용한 아세틸렌가스 검출)

  • Lee, Yun-Kyu;Lee, Kyung-Shik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.23-29
    • /
    • 2010
  • We propose an optical gas sensor, which consists of a hollow core photonic bandgap fiber (HC-PBGF) and fiber Bragg grating (FBG), for the detection of acetylene gas. The gas detection scheme is uniquely characterized by modulating the Bragg wavelength of the fiber Bragg grating around a selected absorption line of gas filled in the photonic bandgap fiber. In the measurement, a 2m-long HC-PBGF and FBG with a Bragg wavelength of 1539.02nm were used. The FBG was modulated at 2Hz. We demonstrated that the optical fiber gas sensor was able to selectively measure the 2.5% and 5% of acetylene gases.

Numerical Study on the Wireless Communication at 550[nm], 850[nm] and 1550[nm] Wavelength LD in Fog and Pointing Error using Cassegrain Optics (카세그레인 광학계를 사용한 광무선통신 시스템에서 550[nm], 850[nm] 및 1550[nm]의 광 파장에 대한 안개 및 포인팅의 에러의 영향에 대한 해석)

  • Hong, Kwon-Eui
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.164-175
    • /
    • 2008
  • Atmospheric effects on laser beam propagation can be broken down into two categories: attenuation of the laser power and fluctuation of laser power due to laser beam deformation. Attenuation consists of scattering of the laser light photons by the fog. Laser beam deformation occurs because of small-scale dynamic changes in the index of refraction of the atmosphere. This causes pointing error. In order to analyse these effect on optical wireless communication system, in this paper uses cassegrain optics as a transmitting and receiving telescope, AID as a detecting device and ill as a light source. The signal modulating and demodulating method is a IM/DD. I show the effects of fog and pointing error and calculate the possible communication distance for BER is $10^{-9}$.

A Novel Approach for Controlling Process Uniformity with a Large Area VHF Source for Solar Applications

  • Tanaka, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.146-147
    • /
    • 2011
  • Processing a large area substrate for liquid crystal display (LCD) or solar panel applications in a capacitively coupled plasma (CCP) reactor is becoming increasingly challenging because of the size of the substrate size is no longer negligible compared to the wavelength of the applied radio frequency (RF) power. The situation is even worse when the driving frequency is increased to the Very High Frequency (VHF) range. When the substrate size is still smaller than 1/8 of the wavelength, one can obtain reasonably uniform process results by utilizing with methods such as tailoring the precursor gas distribution by adjustingthrough shower head hole distribution or hole size modification, locally adjusting the distance between the substrate and the electrode, and shaping shower head holes to modulate the hollow cathode effect modifying theand plasma density distribution by shaping shower head holes to adjust the follow cathode effect. At higher frequencies, such as 40 MHz for Gen 8.5 (2.2 m${\times}$2.6 m substrate), these methods are not effective, because the substrate is large enough that first node of the standing wave appears within the substrate. In such a case, the plasma discharge cannot be sustained at the node and results in an extremely non-uniform process. At Applied Materials, we have studied several methods of modifying the standing wave pattern to adjusting improve process non-uniformity for a Gen 8.5 size CCP reactor operating in the VHF range. First, we used magnetic materials (ferrite) to modify wave propagation. We placed ferrite blocks along two opposing edges of the powered electrode. This changes the boundary condition for electro-magnetic waves, and as a result, the standing wave pattern is significantly stretched towards the ferrite lined edges. In conjunction with a phase modulation technique, we have seen improvement in process uniformity. Another method involves feeding 40 MHz from four feed points near the four corners of the electrode. The phase between each feed points are dynamically adjusted to modify the resulting interference pattern, which in turn modulate the plasma distribution in time and affect the process uniformity. We achieved process uniformity of <20% with this method. A third method involves using two frequencies. In this case 40 MHz is used in a supplementary manner to improve the performance of 13 MHz process. Even at 13 MHz, the RF electric field falls off around the corners and edges on a Gen 8.5 substrate. Although, the conventional methods mentioned above improve the uniformity, they have limitations, and they cannot compensate especially as the applied power is increased, which causes the wavelength becomes shorter. 40 MHz is used to overcome such limitations. 13 MHz is applied at the center, and 40 MHz at the four corners. By modulating the interference between the signals from the four feed points, we found that 40 MHz power is preferentially channeled towards the edges and corners. We will discuss an innovative method of controlling 40 MHz to achieve this effect.

  • PDF

Effects of Mechanically Different Environments on the Crawling Waveform of Caenorhabditis Elegans (기계적으로 다른 환경에서 예쁜 꼬마선충의 기는 파형 변화)

  • Kim, Dae-Yeon;Byeon, Soo-Yung;Kim, Se-Ho;Shin, Jennifer Hyun-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.125-130
    • /
    • 2012
  • The nematode Caenorhabditis elegans is a widely used model organism in biological research. Thanks to the availability of well-established knowledge about its neural connectivity, a wide range of studies have been attempted to uncover the relationship between behaviors and the responsible neurons. In our research, the adaptive behavior of C. elegans in solid environments with different surface rigidities is investigated, where the worm adapts to different mechanical stiffnesses by modulating its crawling waveform. The amplitude and wavelength of the crawling waveform decrease as the environment becomes more rigid. Interestingly, the mechanosensation-defective mutant shows different responses to the surface rigidity compared to those of the wild-type worm. To explain the adaptation process in mechanically different environments, we suggest a plausible neural circuit model.