• Title/Summary/Keyword: Wavefront Aberration

Search Result 49, Processing Time 0.033 seconds

After Lasek Surgeried and TransPRK Surgeried for Myopia, Comparison of High-order Aberrations (근시에서의 라섹과 TransPRK라섹 수술 후 고위수차 비교)

  • Park, Jun-Sung
    • Journal of Korean Clinical Health Science
    • /
    • v.3 no.2
    • /
    • pp.372-377
    • /
    • 2015
  • Purpose: The aim of this study is to compare total high order aberrations between surgery which uses TransPRK and general laser assisted sub-epithelial keratomileusis. Methods: The patients who had general laser assisted sub-epithelial and TransPRK laser assisted sub-epithelial by visiting ophthalmic clinic in Ulsan from January 2014 to August 2014 was researched. Results: When comparing total high order aberrations before and after operation, it was found that total high order aberration in general laser assisted sub-epithelial group increased to $0.222{\pm}0.078{\mu}m$ from $0.074{\pm}0.019{\mu}m$ while that in TransPRK assisted sub-epithelial group increased to $0.179{\pm}0.045{\mu}m$ from $0.076{\pm}0.032{\mu}m$. When comparing the increment in total high order aberrations between two groups after surgery, it was found that the increments of TransPRK assisted sub-epithelial group were statistically smaller than that of general laser assisted sub-epithelial group (p<0.05). Conclusions: This study made a comparative analysis of total high order aberrations between general laser assisted sub-epithelial and TransPRK assisted sub-epithelial which was introduced recently and the result showed a significant difference. The findings of this study suggest that TransPRK assisted sub-epithelial can be used widely in simply improving eye sight and quality of vision by reducing an increase in high order aberration caused by orthokeratology surgery. It is expected that TransPRK assisted sub-epithelial will be helpful for improving the understanding quality of eye sight which occurs by several methods of vision correction surgery.

Change of Spherical Aberration with Aspheric Soft Contact Lens Wear (비구면 소프트콘택트렌즈 착용에 의한 눈의 구면수차 변화)

  • Kim, Jeong Mee;Mun, Mi-Young;Kim, Young Chul;Lee, Koon-Ja
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.4
    • /
    • pp.365-372
    • /
    • 2012
  • Purpose: To investigate ocular higher order aberrations (HOA) and spherical aberration changes caused by an aspheric soft contact lens designed to reduce spherical aberration (SA) of the eye. Methods: Fifty subjects who have successfully experienced soft contact lenses were refitted with aspheric design (Soflens Daily Disposable: SDD, Bausch+Lomb) soft contact lens. Ocular higher order aberrations (HOA) and stand alone SA were measured and analyzed for a 4-mm pupil size using Wave-Scan Wavefront$^{TM}$ aberrometer (VISX, Santa Clara, CA, USA). High and low contrast log MAR visual acuity and contrast sensitivity function (CSF) were also measured under photopic and mesopic conditions (OPTEC 6500 Vision Tester$^{(R)}$). All measurements were conducted monocularly with an undilated pupil. Results: The RMS mean values for total HOA with SDD contact lenses were significantly lower than those at with unaided eyes (p<0.001) and a reduction for SA in the SDD was close to the baseline SA (zero ${\mu}m$) (p<0.001). For the SDD lens, there was a statistically significant correlation between the changes in the total HOA and the contact lens power (r=0.237, p=0.018) as well as between the changes in SA and the lens power (r=0.324, p=0.001). High contrast visual acuity (HCVA) and low contrast visual acuity (LCVA) with SDD lenses were $-0.063{\pm}0.062$ and $0.119{\pm}0.060$, respectively under photopic and $-0.003{\pm}0.063$ and $0.198{\pm}0.067$, respectively under mesopic condition. Contrast Sensitivity Function (CSF) with SDD lenses under both photopic and mesopic conditions was $3.095{\pm}0.068$ and $3.087{\pm}0.074$, respectively. Conclusions: The SDD contact lens designed to control SA reduced the total ocular HOA and SA of the eye, resulting in compensating for positive SA of the eyes. Thus, the optical benefits of the lens with SA control would be adopted for improving the quality of vision.

Error Compensation Algorithm for Higher Surface Accuracy of Freeform Mirrors Based On the Method of Least Squares

  • Jeong, Byeongjoon;Pak, Soojong;Kim, Sanghyuk;Lee, Kwang Jo;Chang, Seunghyuk;Kim, Geon Hee;Hyun, Sangwon;Jeon, Min Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.40.1-40.1
    • /
    • 2015
  • Off-axis reflective optical systems have attractive advantages relative to their on-axis or refractive counterparts, for example, zero chromatic aberration, no obstruction, and a wide field of view. For the efficient operation of off-axis reflective system, the surface accuracy of freeform mirrors should be higher than the order of wavelengths at which the reflective optical systems operate. Especially for applications in shorter wavelength regions, such as visible and ultraviolet, higher surface accuracy of freeform mirrors is required to minimize the light scattering. In this work, we propose the error compensation algorithm (ECA) for the correction of wavefront errors on freeform mirrors. The ECA converts a form error pattern into polynomial expression by fitting a least square method. The error pattern is measured by using an ultra-high accurate 3-D profilometer (UA3P, Panasonic Corp.). The measured data are fitted by two fitting models: Sag (Delta Z) data model and form (Z) data model. To evaluate fitting accuracy of these models, we compared the fitted error patterns with the measured error pattern.

  • PDF

Development of Interferometer for Performance Assessment of IR Optical System (적외선 광학계통 성능평가를 위한 간섭계 개발)

  • 홍경희;고재준;이성태;장세안;오명호
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.179-185
    • /
    • 1991
  • Twyman-Green interferometer is developed for assessment of IR optical system performance. Light source is $CO_2$ gas laser which has 10.6$\mu \textrm m$ wavelength. The light beam is expanded to 2.5 cm dia by Ge lens and splitted by ZnSe parallel plane plate. One of the beams is reflected by refernce mirror which is operated PZT. The fringe will be detected by a pyro-electric vidicon camera and displayed by a CRT monitor. Here, the IR firinge is recorded on the thermal paper. In visible region, the light source is He-Ne laser. The fringe is detected by a CCD camera and displayed by the CRT monitor. The intensity of the fringe is digitized by a image card and processed by a PC. The wavefront aberration function, PSF and OTF are calculated. The results are displayed in 3-D graphs on the monitor or printed out by a line printer.

  • PDF

Catadioptric NA 0.6 Objective Design in 193 nm with 266 nm Autofocus (이중 파장 심자외선 카타디옵트릭 NA 0.6 대물렌즈 광학 설계)

  • Do Hee Kim;Seok Young Ju;Jun Ho Lee;Hagyong Kihm;Ho-Soon Yang
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.2
    • /
    • pp.53-60
    • /
    • 2023
  • We designed a catadioptric objective lens with a 0.6 numerical aperture (NA) for semiconductor inspection at 193 nm. The objective lens meets major requirements such as a spatial resolution of 200 nm and a field of view (FOV) of 0.15 mm or more. We selected a wavelength of 266 nm for autofocus based on the availability of the light source. First, we built the objective lenses of three lens groups: a focusing lens group, a field-lens group, and an NA conversion group. In particular, the NA conversion group is a group of catadioptric lenses that convert the numerical aperture of the beam focused by the prior groups to the required value, i.e., 0.6. The last design comprises 11 optical elements with root-mean-squared (RMS) wavefront aberrations less than λ/80 over the entire field of view. We also achieved the athermalization of the objective lens with focus-shift alone satisfying the performance of RMS wavefront aberration below λ/30 at a temperature range of 20 ± 1.2 ℃.

Stable lateral-shearing interferometer for in-line inspection of aspheric pick-up lenses (생산 라인에서의 광 Pick-up용 비구면 대물 렌즈 측정을 위한 안정된 층밀리기 간섭계)

  • 조우종;김병창;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.189-193
    • /
    • 1997
  • Aspheric pick-up lenses are increasingly used in consumer products such as computer and multimedia, as their mass production has become possible owing to the injection molding process. However still much work needs to be done for more effective manufacture of aspheric lenses, one area of which is the in-line inspection of produced lenses. In this paper, we present a lateral-shearing interferometer that has specially been designed to have a high immunity to external vibration and atmospheric disturbance. The interferometer comprises four prisms. They are directly attached to each other using an immersion oil so that relative sliding motions between the prisms are allowed. Their relative displacement can readily generate necessary lateral-shearing and phase-shifting to determine the wavefront of the beam collimated by the lens under inspection. A special phase-measuring algorithm of arbitrary-bucket is adopted to compensate the phase-shifting error caused by the thickness reduction in the immersion oil. Zernike polynomial fitting has done for determinating quantitative aberration of aspheric pick-up lenses. The interferometer built in this work is robust to external mechanical vibration and atmospheric disturbance so that experimental results show that it has a repeatability of less than λ/100.

  • PDF

Super-resolution Microscopy with Adaptive Optics for Volumetric Imaging

  • Park, Sangjun;Min, Cheol Hong;Han, Seokyoung;Choi, Eunjin;Cho, Kyung-Ok;Jang, Hyun-Jong;Kim, Moonseok
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.550-564
    • /
    • 2022
  • Optical microscopy is a useful tool for study in the biological sciences. With an optical microscope, we can observe the micro world of life such as tissues, cells, and proteins. A fluorescent dye or a fluorescent protein provides an opportunity to mark a specific target in the crowd of biological samples, so that an image of a specific target can be observed by an optical microscope. The optical microscope, however, is constrained in resolution due to diffraction limit. Super-resolution microscopy made a breakthrough with this diffraction limit. Using a super-resolution microscope, many biomolecules are observed beyond the diffraction limit in cells. In the case of volumetric imaging, the super-resolution techniques are only applied to a limited area due to long imaging time, multiple scattering of photons, and sample-induced aberration in deep tissue. In this article, we review recent advances in super-resolution microscopy for volumetric imaging. The super-resolution techniques have been integrated with various modalities, such as a line-scan confocal microscope, a spinning disk confocal microscope, a light sheet microscope, and point spread function engineering. Super-resolution microscopy combined with adaptive optics by compensating for wave distortions is a promising method for deep tissue imaging and biomedical applications.

Corneal Asphericity and Optical Performance after Myopic Laser Refractive Surgery (굴절교정수술을 받은 근시안의 각막 비구면도와 광학적 특성 평가)

  • Kim, Jeong-Mee;Lee, A-Young;Lee, Koon-Ja
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.2
    • /
    • pp.179-186
    • /
    • 2013
  • Purpose: To compare corneal asphericity, visual acuity (VA), and ocular and corneal higher-order aberrations (HOAs) between myopic refractive surgery and emmetropia groups. Methods: Twenty three subjects ($23.0{\pm}2.5$ years) who underwent myopic refractive surgery and twenty emmetropia ($21.0{\pm}206$ years) were enrolled. The subjects'criteria were best unaided monocular VA of 20/20 or better in both two groups. High and low contrast log MAR visual acuities were measured under photopic and mesopic conditions. Corneal and ocular HOAs were measured using Wavefront Analyzer (KR-1W, Topcon) for 4 mm and 6 mm pupils. Corneal asphericity was taken by topography in KR-1W. Results: There was no significant difference in VA between two groups under either photopic or mesopic conditions. In ocular aberrations, there were significant differences in total HOAs, fourthorder and spherical aberration (SA) for a 6 mm between two groups (p=0.045, p<0.001, and p<0.001, respectively). In corneal aberrations, there was a significant difference in SA for 4 mm (p=0.001) and 6 mm (p<0.001) pupils between two groups and there were statistically significant differences in total HOAs (p<0.001) and fourth-order aberrations (p<0.001) between two groups for a 6 mm pupil. There was a significant correlation in emmetropia between Q-value and SA in ocular aberrations for 4 mm and 6 mm pupils (r=0.442, p=0.004, and r=0.519, p<0.001) and in corneal aberrations for 4 mm and 6 mm pupils (r=0.358, p=0.023, and r=0.646, p<0.001). No significant correlations were found between Q-value and SA in refractive surgery group. Conclusions: VA in myopic refractive surgery is better than or similar to emmetropia. Nevertheless, the more increasing pupil size is, the more increasing aberrations are. Thus, it could have an influence on the quality of vision at night.

The effect analysis of birefringence of plastic f$\heta$ Iens on the beam diameter (플라스틱 f$\heta$렌즈의 복굴절이 결상빔경에 미치는 영향분석)

  • 임천석
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.2
    • /
    • pp.73-79
    • /
    • 2000
  • We measure a beam diameter of scan and sub-scan direction of LSD (Laser Scanning Urnt) which uses $fheta$ lens produced by injecLion molding method as a scanning lens. While the measured beam diameter in scan direction, which is $62muextrm{m}$ to $68\mu\textrm{m}$, shows similar size comparing to the design beam diameter, the sub-scan beam diameter shows sIzable beam diameter deviation as much as 37 11m ranging from $78\mu\textrm{m}$ to $115\mu\textrm{m}$. Injection molding lens has the surface figure error due to the shrinkage III the cooling time and the internal distortion (birefringence) due to the uneven cooling conditIOn so that these bring about wavefront aberration (i.e., the enlargement of beam size), and are eventually expre~sed as the deterioration of the pdnting image. In this paper. we first measure and analyze beam diameter, birefringence (polanzation ratio), and asphedcal figure error of mIens in order to know the principle cause of the beam diameter deviation in sub-scan directIOn. And Lhen. through the analysis of a designed depth of focus and a calculated field curvature (imaging position of the optical axis directIon) using the above figure elTor data, we know Lhat the birefringence IS the main factor of sizable beam diameter deVIation in sub-scan direction. ction.

  • PDF