• Title/Summary/Keyword: Wave-induced bending moment

Search Result 7, Processing Time 0.023 seconds

Nonlinear effect on wave loads of large ships in time domain

  • Kim, Mun-Sung;Park, Jong-Jin;Kim, Byung-Woo;Eom, Jae-Kwang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.95-104
    • /
    • 2011
  • As sea state harsher in the ocean space, more large motion and wave loads occurs on ships hull by non-linear phenomena. To consider nonlinear effect on ships hull in the structural design verification, the direct calculation method with numerical approach is used rather than rule values for the reliable accuracy. In this paper, the non-linear wave loads analysis in time domain is performed by using a Rankine Panel Method together with numerical schemes. Linear calculations have been carried out based on DNV CSA-2 notation to generate the motion responses and wave loads of large ships. By short and long term analysis, the design wave amplitudes are selected for the nonlinear analysis. The maximum wave induced bending moment in hogging and sagging conditions are calculated in the nonlinear analysis. Also, the green water effect on the wave induced vertical bending moment was investigated. The results show the vertical bending moments are more influenced by green water in sagging condition than in hogging condition due to green water loading.

Prediction of the wave induced second order vertical bending moment due to the variation of the ship side angle by using the quadratic strip theory

  • Kim, Seunglyong;Ryue, Jungsoo;Park, In-Kyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.259-269
    • /
    • 2018
  • In this study, the second order bending moment induced by sea waves is calculated using the quadratic strip theory. The theory has the fluid forcing terms including the quadratic terms of the hydrodynamic forces and the Froude-Krylov forces. They are applied to a ship as the external forces in order to estimate the second order ship responses by fluid forces. The sensitivity of the second order bending moment is investigated by implementing the quadratic terms by varying the ship side angle for two example ships. As a result, it was found that the second order bending moment changes significantly by the variation of the ship side angle. It implies that increased flare angles at the bow and the stern of ships being enlarged would amplify their vertical bending moments considerably due to the quadratic terms and may make them vulnerable to the fatigue.

Effects of Operational Condition and Sea States on Wave-Induced Bending Moments of Large Merchant Vessels (운항조건 및 해상상태가 대형 화물선의 파랑 중 굽힘모멘트에 미치는 영향)

  • 김동문;백점기
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.5
    • /
    • pp.60-67
    • /
    • 2003
  • For risk or reliability assessment of ship structures against particular hazardous situations such as total loss or sinking due to hull girder collapse, the short-term based response analysis rather than the long-term response analysis is required to determine wave-induced bending moments when the ship encounters a storm of specific duration and with a specified small encounter probability. In the present study, the effects of operational condition and sea states on wave-induced bending moments of large merchant vessels are investigated. A series of the short-term response analyses for a hypothetical VLCC and a Capesize bulk carrier (CSBC) are carried out with varying operational condition and sea states which include ship speed, significant wave height and wave persistence time, using the linear-strip theory based program ABS/SHIPMOTION and the MIT sea-keeping tables. The computed results are also compared with the IACS design formula predictions. The results and insights developed from the present study are summarized.

Long-term Loads based on Evaluation of Resistance and Seakeeping Performances for a Desalination Plant Ship (해상 이동형 해수담수화 플랜트 선박의 저항 및 내항 성능 평가에 따른 장기 하중 추정)

  • Lee, Jae-bin;Paik, Kwang-Jun;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.632-640
    • /
    • 2019
  • Desalination plant ships have been recently regarded as one of the probable solutions for drought seasons in many countries. Because desalination plants should be mounted on the desalination ships and special purpose storages such as salty waste water tanks are necessary, onboard and compartment arrangements would be distinguished from those of other conventional commercial ships. This paper introduces some basic design procedure including resistance/propulsion and seakeeping performances. The ship lines were improved step by step after modification of the ship lines and verification of resistance/propulsion performances using computational fluid dynamics (CFD). After finalization of the ship lines, the seakeeping performance was also evaluated to check motion behaviors and drive wave-induced loads such as the wave shear force and bending moment. It was proved that the predicted long-term vertical wave shear force and bending moment were significantly less than the rule-based ones, thus it is expected that the deliverables of this study will reduce the construction cost of desalination plant ships.

Nonlinear response of fixed jacket offshore platform under structural and wave loads

  • Abdel Raheem, Shehata E.
    • Coupled systems mechanics
    • /
    • v.2 no.1
    • /
    • pp.111-126
    • /
    • 2013
  • The structural design requirements of an offshore platform subjected to wave induced forces and moments in the jacket can play a major role in the design of the offshore structures. For an economic and reliable design; good estimation of wave loadings are essential. A nonlinear response analysis of a fixed offshore platform under structural and wave loading is presented, the structure is discretized using the finite element method, wave plus current kinematics (velocity and acceleration fields) are generated using 5th order Stokes wave theory, the wave force acting on the member is calculated using Morison's equation. Hydrodynamic loading on horizontal and vertical tubular members and the dynamic response of fixed offshore structure together with the distribution of displacement, axial force and bending moment along the leg are investigated for regular and extreme conditions, where the structure should keep production capability in conditions of the 1-yr return period wave and must be able to survive the 100-yr return period storm conditions. The result of the study shows that the nonlinear response investigation is quite crucial for safe design and operation of offshore platform.

A study on prediction of whipping effect of very large container ship considering multiple sea states

  • Kim, Beomil;Choung, Joonmo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.387-398
    • /
    • 2020
  • In the design stage of the very large container ships, some methodologies for the whipping effects have been developed, but most of them are based on single sea state. We developed a methodology that considers multiple sea states. Fluid-structure Interaction (FSI) analyses with one dimensional structural model were carried out to capture slamming-induced transient whipping behaviors. Because of the nature of random phases of the applied wave spectra, the required period for entire FSI analyses was determined from the convergence study where the whipping effect became stable. Low pass filtering was applied to the transient whipping responses to obtain the hull girder bending moment processes. Peak counting method for the filtered whipping responses was used to obtain collection of the vertical bending moment peaks. The whipping effect from this new method is compared with that from based on single sea state approach. The efficiency and advantage of the new methodology are presented.

Development of New Back-Up Roll for Strip Shape Control (형상제어를 위한 새로운 보강롤의 개발)

  • Lee, Won-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.327-333
    • /
    • 2003
  • Most of shape defects in steel strip are originated from the structure of rolling mill itself. For instance, strip crown occurs when the work roll is deformed by the bending moment induced on roll chocks. To get rids of the shape defects, it is necessary to increase the stiffness of rolling mill. The structure change of back-up roll is one of alternative ways to increase the mill stiffness without facility revamping from 4 high mill to 6 high mill. In this research work, the new back-up roll was developed and can be used in any type of 4 high mill to reduce the strip shape defects. The developed back-up roll consists of sleeve, arbor and phase angle adjusting system for arbor. The circumference of arbor is specially machined to adapt the strip width change during rolling. The experimental cold rolling test was done to prove the effectiveness of newly developed back-up roll. The experimental rolling results show that the new back-up roll has more powerful performance in reducing the shape defects than conventional back-up roll. It was also found that the new back-up roll has higher stability for shape control. In addition to, the only sleeve surface needs to be reground and changed in most cases, so that the maintenance cost can be greatly reduced.