• Title/Summary/Keyword: Wave structure

Search Result 2,797, Processing Time 0.027 seconds

A Study on the Soft Reclaimed Lands Composed of Shallow Ocean Sediments in Keum River Estuary: Two Dimensional S Wave Velocity and Resolution Obtained by Inverting Surface Waves (금강 하구 천해성 퇴적층의 연약지반에 관한 연구: 표면파 역산에 의한 S파 속도구조와 해상도)

  • Jung, Hee-ok
    • Journal of the Korean earth science society
    • /
    • v.22 no.3
    • /
    • pp.179-185
    • /
    • 2001
  • Borehole tests are commonly used as a tool to obtain the physical properties of soils and rocks. The results of borehole tests are, however, discontinuous. Interpolation methods are applied to interpret the data gap between the borehole test points. The interpolation is valid only if the horizontal variations of the ground between the test points are small enough to ignore. A surface wave inversion method was used to study the S wave velocity of the very soft soil to provide the continuous 2 dimensional S wave velocity structure. The resolution of the S wave velocity structure was used to interpret the inversion results.

  • PDF

Characteristics of Wave Forces by Installation of New Circular Caisson on the Back of Old Circular Caisson (기존 원형케이슨 후면에 신규 원형케이슨 설치에 따른 파력특성 분석)

  • Park, Min Su
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.395-402
    • /
    • 2019
  • In order to increse the stability of old caissons, the design and the construction are performed by installation of new caissons on the back of or on the front of old caissons. In this study, we use the eigenfunction expasnion method to analyze the characteristics of wave forces when new circular caissons are installed on the back of old caissons. The comparison of numerical results between eigenfunction expansion method and ANSYS AQWA is made and the wave force acting on each circular caisson is calculated by considering the wave-structure interaction effect.

Wave Control by an Array of Porous Dual Cylindrical Structures (투과성 이중 원통구조물 배열에 의한 파랑제어)

  • CHO IL-HYOUNG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.7-14
    • /
    • 2004
  • The interaction of incident manochromatic waves with an array of N surface-piercing porous dual cylindrical structures is investigated in the frame of three-dimensional linear potential theory. The dual cylindrical structure is camposed of concentric two cylinders. The exterior cylinder is porous and the interior cylinder is impermeable. The fluid domain is divided into N+1 regions i.e. a single exterior region and N interior regions. The diffraction potentials in each region representing the scattering of incident waves by an array of porous cylindrical structures are expressed by the Fourier Bessel series. The unknown coefficients in each region are determined by applying the porous boundary condition and continuity of mass flux at the matching boundary. It is found that an array of porous cylindrical structures reduces both the wave forces and the wave run-up, and shows the excellent performance of wave blocking. The results show that various types of breakwater exchanging seawater are prospective by controlling the porosity and the configuration of cylindrical structures.

Nonlinear Wave Forces on an Offshore Wind Turbine Foundation in Shallow Waters

  • Choi, Sung-Jin;Lee, Kwang-Ho;Hong, Keyyoung;Shin, Seong-Ho;Gudmestad, O.T.
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.2
    • /
    • pp.68-76
    • /
    • 2013
  • In this study, a 3D numerical model was used to predict nonlinear wave forces on a cylindrical pile installed in a shallow water region. The model was based on solving the viscous and incompressible Navier-Stokes equations for a two-phase flow (water and air) model and the volume of fluid method for treating the free surface of water. A new application was developed based on the cut-cell method to allow easy installation of complicated obstacles (e.g., bottom geometry and cylindrical pile) in a computational domain. Free-surface elevation, water particle velocities, and inline wave forces were calculated, and the results show good agreement with experimental data obtained by the Danish Hydraulic Institute. The simulation results revealed that the proposed model can, without the use of empirical formulas (i.e., Morison equation) and additional wave analysis models, reliably predict non-linear wave forces on an offshore wind turbine foundation installed in a shallow water region.

Numerical Simulation of Shock Wave Reflecting Patterns for Different Flow Conditions

  • Choi, Sung-Yoon;Oh, Se-Jong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.74-85
    • /
    • 2002
  • The numerical experiment has been conducted to investigate the unsteady shock wave reflecting phenomena. The cell-vertex finite-volume, Roe's upwind flux difference splitting method with unstructured grid is implemented to solve unsteady Euler equations. The $4^{th}$-order Runge-Kutta method is applied for time integration. A linear reconstruction of the flux vector using the least-square method is applied to obtain the $2^{nd}$-order accuracy for the spatial derivatives. For a better resolution of the shock wave and slipline, the dynamic grid adaptation technique is adopted. The new concept of grid adaptation technique, which is much simpler than that of conventional techniques, is introduced for the current study. Three error indicators (divergence and curl of velocity, and gradient of density) are used for the grid adaptation procedure. Considering the quality of the solution and the numerical efficiency, the grid adaptation procedure was updated up to $2^{nd}$ level at every 20 time steps. For the convenience of comparison with other experimental and analytical results, the case of interaction between the straight incoming shock wave and a sharp wedge is simulated for various flow conditions. The numerical results show good agreement with other experimental and analytical results, in the shock wave reflecting structure, slipline, and the trajectory of the triple points. Some critical cases show disagreement with the analytical results, but these cases also have been proven to show hysteresis phenomena.

Effects of the Equivalence Ratio on Propagation Characteristics of CH4-Air Premixed Flame Intervened by an Ultrasonic Standing Wave (정상초음파가 개재하는 CH4-Air 예혼합화염의 전파특성에 대한 당량비의 영향)

  • Seo, Hang Seok;Lee, Sang Shin;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.16-23
    • /
    • 2013
  • An experimental study has been conducted to investigate the effects of equivalence ratio on the propagation characteristics of $CH_4$-air premixed flame intervened by an ultrasonic standing wave. A Schlieren photography was used for the flame structure visualization, and the flame propagation behavior was investigated in detail throughout the post-processing analysis. It is found that the structural variation of methane/air premixed flame caused by the intervention of ultrasonic standing wave give rise to the enhancement of combustion reaction and flame propagation velocity. Effectiveness of the standing wave on the flame velocity decreases as the equivalence ratio increases. Larger flame velocity with the standing wave becomes undistinguishable in a specific range of equivalence ratios.

Dispersion of Rayleigh Waves in the Korean Peninsula

  • Cho, Kwang-Hyun;Lee, Kie-Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.231-240
    • /
    • 2006
  • The crustal structure of the Korean Peninsula was investigated by analyzing phase velocity dispersion data of Rayleigh waves. Earthquakes recorded by three component broad-band velocity seismographs during 1999-2004 in South Korea were used in this study. The fundamental mode Rayleigh waves were extracted from vertical components of seismograms by multiple filter technique and phase match filter method. Phase velocity dispersion curves of the fundamental mode signal pairs for 14 surface wave propagation paths on the great circle in the range 10 to 80 sec were computed by two-station method. Treating the shear velocity of each layer as an independent parameter, phase velocity data of Rayleigh wave were inverted. All the result models can be explained by a rather homogeneous crust of shear-wave velocity increasing from 2.8 to 3.25 km/sec from top to about 33 km depth without any distinctive crustal discontinuities and an uppermost mantle of shear-wave velocity between 4.55 and 4.67 km/sec. Our results turn out to agree well with recent study of Cho et al. (2006 b) based on the analysis of seismic background noises to recover short-period (0.5-20 sec) Rayleigh- and Love-wave group velocity dispersion characteristics.

  • PDF

Wave Propagation Analysis for Pile-Slab Section on High Speed Railway (고속철도 파일슬래브공법 적용구간에서의 파전파해석)

  • Lee, Kang-Myung;Lee, Il-Wha
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3201-3207
    • /
    • 2011
  • This paper reviewed wave propagation of train vibration based on the study of high speed railway soft ground section with pile slab construction. In a filed of railway, concrete track has been adapted in a railway construction. And in order to maintain its track, soil improving method was required to control residual settlement. Within many soft ground settlement prevention techniques, pile slab method has an effect of minimizing residual settlement of soft ground. This is possible using support embankment load method by construct pile slab or cap the upper soft ground. This paper reviewed vibration wave characteristic of soft ground section with pile slab using numerical analysis application through finite element analysis. Pile slab method is established between high stiffened soft ground and embankment this creates a possibility of vibration block or slab amplification. Thus analyzed of wave propagation was done with roadbed and structure property to confirm application performance of pile slab method of high speed railway structure.

  • PDF

Coupled Vibration of Stiffened Plates due to Motion of Stiffeners (보강재의 운동으로 인한 보강판의 연성진동)

  • 이현엽
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.153-159
    • /
    • 1997
  • In a stiffened plate reinforced on one of its sides by beam type stiffeners, the asymmetry about the plate mid-plane induces coupling between flexural wave and longitudinal wave. In this research interactions between flexural and longitudinal wave motion are analyzed in a stiffened plate which is reinforced only in one direction. The plate is modelled as a beam to which offset spring-mounted masses are attached at regular intervals. Propagation constants of the coupled waves and corresponding characteristic waves are derived by using periodic structure theory, and a computer code is developed. Also, sample calculations are carried out and the results are discussed.

  • PDF

A Study on the Coastal Development Model Due to the Construction of Artificial Island (인공섬건설에 따른 해안선변형모델에 관한 연구)

  • 오세욱;민병형;김기철;김재중
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.133-142
    • /
    • 1992
  • Beach evolution is of the most important problem is the coastal engineering. Especially, the structure construction through reclamation in the shallow water region nesar the beach will cause many severe problems around the structure. Beach evolution due to the construction of an artificial island in this study was studied using wave transform model and associated of an artificial island in this study was studied using wave transform model and associated sediment transport model. Numerical simulation of the model was applied to the Kwangan beach using the data of waves and shoreline of the area. The combined wave transform model and beach evolution model showed good results. The results show a breakwater will be needed to prevent severe erosion near the eastward Kwangan beach when construction an artificial island in the Suyong Bay. Good results of the study also suggest that the present model can be more widely applied to the prediction of beach evolution.

  • PDF