• Title/Summary/Keyword: Wave setup

Search Result 98, Processing Time 0.032 seconds

Analysis of Noise Effects in Data Acquisition of Multi-Axis Force/Torque Sensors

  • Kang, Chul-Goo;Kim, Yong-Chan;Park, Chol-Ho;Nam, Hyun-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1254-1258
    • /
    • 2003
  • One of the major factors that effect sensor performance is analog noise that added in a sensor signal such as voltage. In multi-axis force sensors, error sources may be classified mainly in two groups. One is structural error due to inaccuracy of sensor body. The other error source is noise signals existing in the sensed information. This paper presents a brief review about the principle of multi-axis force sensors, and then proposes a method that can reduce the effect of noise signal to sensor performance. The method is to convert analog voltage signal to digital numbers near sensor body and then to read these digital signals and conduct signal processing in the computer. By this way, we can eliminate a bad effect of electromagnetic wave emitted from computer and of 60 Hz noise emitted from AC source. The proposed method is investigated through experimental demonstration. The experimental results show that it improves S/N ratio of the sensor about 40 times in our experimental setup.

  • PDF

A Study on Topography Change due to Setup Condition of Artificial Reef (인공리프의 설치조건에 따른 표사이동 특성 연구)

  • Shim, Kyu-Tae;Kim, Kyu-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.3
    • /
    • pp.154-161
    • /
    • 2017
  • The purpose of this study was to investigate the change of length, opening width, and number of openings effecting on topography change around artificial reefs under erosive wave condition. Hydraulic model test was conducted to see sediment transport around the structures and the relation among the installation condition of the artificial reefs, generated velocity, wave deformation, and topographic change was reviewed. Experimental results show that the sediment transport rate was reduced; however, the scour around the structures was increased under the condition of having a single opening compared to the structures having a plurality of openings which shows inversely proportional to the size of Lr/W.

Material Characterization of MR Fluids at High Frequencies (고주파 영역에서의 MR 유체 특성연구)

  • Park, Kyoung-Mi;Kim, Jae-Hwan;Choi, Seung-Bok;Kim, Kyung-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.210-215
    • /
    • 2002
  • MR(Magnetorheogical) fluid composed of fine iron powders dispersed in silicon oil is utilized to many smart structures and devices because of its significant rheological property change by the application of an external magnetic field. When we deal with the shock wave attenuation of warship structures, we should be able to characterize the high frequency behavior of MR fluids. So far, however, many efforts have been focused on the material characterization of MR fluids at low frequencies below 100Hz. In this paper, the MR fluid property characterization at high frequency region is performed. An experimental setup based on wave transmission technique is made and the storage modulus as well as the loss modulus of MR fluids are found from the measured data of speed sound and attenuation. Details of the experiment are addressed and the obtained storage and loss moduli are addressed at $50kHz{\sim}100kHz$.

  • PDF

Two-dimensional water seepage monitoring in concrete structures using smart aggregates

  • Zou, Dujian;Li, Weijie;Liu, Tiejun;Teng, Jun
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.313-323
    • /
    • 2018
  • The presence of water inside concrete structures is an essential condition for the deterioration of the structures. The free water in the concrete pores and micro-cracks is the culprit for the durability related problems, such as alkali-aggregate reaction, carbonation, freeze-thaw damage, and corrosion of steel reinforcement. To ensure the integrity and safe operation of the concrete structures, it is very important to monitor water seepage inside the concrete. This paper presents the experimental investigation of water seepage monitoring in a concrete slab using piezoelectric-based smart aggregates. In the experimental setup, an $800mm{\times}800mm{\times}100mm$ concrete slab was fabricated with 15 SAs distributed inside the slab. The water seepage process was monitored through interrogating the SA pairs. In each SA pair, one SA was used as actuator to emit harmonic sine wave, and the other was used as sensor to receive the transmitted stress wave. The amplitudes of the received signals were able to indicate the water seepage process inside the concrete slab.

On Variation Characteristics of Run-up Height over Beach due to Plane Arrangement of Submerged Breakwaters (잠제의 배치형상에 따른 연안의 처오름 변화에 관하여)

  • Hur, Dong-Soo;Lee, Woo-Dong;Lee, Hyun-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.457-460
    • /
    • 2006
  • This study is to investigate the variation characteristics of run-up height over sandy beach due to the plane distribution of submerged breakwaters. In this study, Three-Dimensional numerical model with Large Eddy Simulation, which is able to simulate directly WAve Structure Seabed interaction (hereafter, LES-WASS-3D) has been newly developed. A comparison between the numerical model and existing experimental results was made to verify accuracy of newly proposed LES-WASS-3D model, and showed fairly nice agreement. In addition, based on the LES-WASS-3D model, the variation characteristics of run-up height over sandy beach are discussed with relation to the offshore distance and opening width of submerged breakwaters.

  • PDF

Development of Photothermal Mirage Technique for Measuring Thermal Diffusivity (열확산도 측정을 위한 광열 신기루 기법 개발)

  • Choi, Sun-Rock;Lee, Joo-Chul;Kim, Dong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1220-1228
    • /
    • 2003
  • The mirage technique is proved to be powerful in measuring the thermal diffusivity of materials. In particular, its contactless nature makes it suitable for delicate samples and microscale structures. In this study, thermal-wave-coupling method is developed in a general form for both thermally thin and thick samples. In the suggested measuring scheme, the probe beam can be positioned close to the pump beam and the absolute position need not be measured. Therefore the new scheme provides a relatively simple yet effective way to determine the thermal diffusivity of thermally thick samples. Thermal diffusivities of bulk samples like Ni and Al were measured and the characteristics of mirage signal for a thin film were observed by using the mirage experimental setup. The apparent thermal diffusivity was measured by varying such parameters as probe beam height, size of pump beam, power of pump beam, and surface condition of sample. From the practical standpoint, it is shown that the size of the pump beam is the most important factor for accurate thermaldiffusivity measurement. Experiments using thin-film samples show that the thermal diffusivity of a substrate covered with thin film can be measured by photothermal mirage signals.

Stimulus Artifact Suppression Using the Stimulation Synchronous Adaptive Impulse Correlated Filter for Surface EMG Application

  • Yeom, Ho-Jun;Park, Ho-Dong;Chang, Young-Hui;Park, Young-Chol;Lee, Kyoung-Joung
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.451-458
    • /
    • 2012
  • The voluntary EMG (vEMG) signal from electrically stimulated muscle is very useful for feedback control in functional electrical stimulation. However, the recorded EMG signal from surface electrodes has unwanted stimulation artifact and M-wave as well as vEMG. Here, we propose an event-synchronous adaptive digital filter for the suppression of stimulation artifact and M-wave in this application. The proposed method requires a simple experimental setup that does not require extra hardware connections to obtain the reference signals of adaptive digital filter. For evaluating the efficiency of this proposed method, the filter was tested and compared with a least square (LS) algorithm using previously measured data. We conclude that the cancellation of both primary and residual stimulation artifacts is enhanced with an event-synchronous adaptive digital filter and shows promise for clinical application to rehabilitate paretic limbs. Moreover because this algorithm is far simpler than the LS algorithm, it is portable and ready for real-time application.

Subjective Listening Experiments on a Front and Rear Array-Based WFS System

  • Yoo, Jae-Hyoun;Seo, Jeong-Il;Shim, Hwan;Chung, Hyun-Joo;Sung, Koeng-Mo;Kang, Kyeong-Ok
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.977-980
    • /
    • 2011
  • Wave field synthesis (WFS) has been gathering more and more attention recently due to its ability to perfectly reproduce an original sound field. However, to realize theoretically perfect WFS, a four-sided loudspeaker array that encloses the listener is required. However, it is difficult to build such a system except in large listening spaces, such as a theater or concert hall. In other words, if the listening space is a home, installing a side loudspeaker array is impractical. If the two side walls located to the left and right of the listener can be omitted, a setup using only front and rear loudspeaker arrays may be a solution. In this letter, we present a subjective listening experiment of sound localization/distance based on a WFS using a front and rear loudspeaker array system which is conducted on two listening points and shows average localization errors of $6.1^{\circ}$ and $9.18^{\circ}$, while the average distance errors are -27% (0.5 m) and -29% (0.6 m), respectively.

Evaluation of 2D Shear Wave Velocity Imaging of Subground Using HWAW Method (HWAW 기법을 이용한 지반의 2차원 전단파 속도 평가)

  • Kim, Jong-Tae;Park, Hyung-Choon;Bang, Eun-Seok;Park, Heon-Joon;Kim, Dong-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.105-114
    • /
    • 2007
  • Two-dimensional imaging of $V_s$ profile becomes more important in Korea because of the large horizontal variation of soil stiffness. To obtain a shear-wave velocity profile in geotechnical practice, various seismic nondestructive investigation methods are being frequently used. In this study, harmonic wavelet analysis of wave (HWAW) method is applied to the determination of $V_s$ profile to overcome some of weaknesses in the existing surface wave methods. HWAW method which is based on time-frequency analysis using harmonic wavelet transform has been developed to determine phase and group velocities of waves. Field testing of this method is relatively simple and fast because one experimental setup which consists of one pair of receivers is needed to determine $V_s$ profile of site. The proposed method uses the signal portion of the maximum local signal/noise ratio to evaluate the phase velocity to minimize the effects of noise, and uses single array inversion which considers receiver locations. Field tests were performed in 2 sites in order to evaluate accuracy of test method and estimate the applicability of 2-D imaging by HWAW method. Through field applications and comparison with other test results, the good accuracy and applicability of the proposed method were verified.

Development of The New Shape Control Algorithm with The Strip Thickness Decoupling in Hot Strip Mill

  • Dukbum Shin;Kim, Jongcheol;Sangchul Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.175.2-175
    • /
    • 2001
  • The strip profile and shape control is one of the most important technologies in Hot Rolling Mill System. Because the unbalance of strip´s shape and wave appearance between stands has a bad effect on Hot Rolling Mill System by making the inferior thickness, strip´s damage and so forth in factories. Many competition Plate Mill introduced shape control system, for example, pair cross-mill, work roll bender, which includes shape measuring instruments and shape control mathematical models. Shape meter, which is equipped for flatness, only does feedback control at the top of coil. And, for crown, we depend on initial setup value and there is no feedback control. Therefore we predict the shape of strip using rolling pressure, bender force and tension of inter-stand in ...

  • PDF