• Title/Summary/Keyword: Wave reduction

Search Result 824, Processing Time 0.027 seconds

ER Smart Structures for Shock Wave Reduction (충격파 저감을 위한 ER 지능구조물)

  • 김재환;김지선;최승복;김경수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.9
    • /
    • pp.679-687
    • /
    • 2003
  • Shock wave reduction in electrorheological(ER) smart structures is studied. ER insert is a composite structure comprising two elastic outer layers between which is sandwiched layer of ER fluid. When a voltage is applied across the outer layers. the shear modulus and the loss factor of the ER fluid are enabled, and thus the dynamic properties of the composite structure is altered. For the shock wave reduction in a hull mount of a submerged structure, ER inserts are made on the hull mount structure. To investigate the ER insert shape. many types of ER insert pattern are considered. Modal test of ER insert structures is performed to obtain the mode shapes, natural frequencies and the acceleration transmissibility. The acceleration transmissibility is reduced at such a frequency region when an electric field is applied. It is observed that the natural frequencies and mode shapes can be tunable by applying electric field. The ER-inserted hull mount is installed in an integrated system and the overall performance of shock wave reduction is tested. The possibility of shock wave reduction in the hull mount is demonstrated.

Wave Overtopping Reduction Coefficient of Vertical Wall for Obliquely Incident Waves (경사입사파에 대한 직립구조물에서의 월파량 저감계수)

  • Kim, Young-Taek;Lee, Jong-In;Cho, Yong-Sik;Ha, Tae-Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.3
    • /
    • pp.149-155
    • /
    • 2010
  • The existing formula for estimating the wave overtopping are mainly about the perpendicularly incident wave to the structure and wave overtopping formula for the obliquely incident wave are rare. Moreover, these formula present only the overtopping reduction factor(${\gamma}_{\beta}$) with respect to the incident wave angle rather than the spatial distribution of overtopping along the structures because the length of model is relatively too short for the wave to propagate along the structure. In this study, the wave overtopping reduction factor considering the spatial variation of wave overtopping along the vertical wall is investigated using the hydraulic model tests and the results are compared with the those of EurOtop(2007). The wave overtopping reduction factor is modified for ${\beta}$ > $45^{\circ}$ condition.

Experimental study on compression wave propagating in a sudden reduction duct (급축소관을 전파하는 압축파에 관한 실험적 연구)

  • Kim, Hui-Dong;Matsuo, Kazuyasu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1139-1148
    • /
    • 1997
  • Compression waves propagating in a high-speed railway tunnel develops large pressure fluctuations on the train body or tunnel structures. The pressure fluctuations would cause an ear discomfort for the passengers and increase the aerodynamic resistance of trains. As a fundamental research to resolve the pressure wave phenomenon in the tunnel, experiments were carried out by using a shock tube with an open end. A blockage to model trains inside the tunnel was installed on the lower wall of shock tube, thus forming a sudden cross-sectional area reduction. The compression waves were obtained by the fast opening gate valve instead of a conventional diaphragm of shock tube and measured by the flush mounted pressure transducers with a high sensitivity. The experimental results were compared with the previous theoretical analyses. The results show that the ratio of the reflected to the incident compression wave at the sudden cross-sectional area reduction increases but the ratio of the passing to the incident compression wave decreases, as the incident compression wave becomes stronger. This experimental results are in good agreements with the previous theoretical ones. The maximum pressure gradient of the compression wave abruptly increases but the width of the wave front does not vary, as it passes over the sudden cross-sectional area reduction.

Numerical Study of effects on micro-pressure wave reduction by a hood on a narrow tunnel (후드를 이용한 협소 터널 미기압파 감소 효과에 대한 수치적 연구)

  • Yun Su-Hwan;Kim Byung-Yeol;Ku Yo-Cheon;Lee Dong-ho;Kwon Hyeok-Bin;Ko Tae-hwan
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.872-877
    • /
    • 2005
  • The train entry into a tunnel generates a strong compression wave in the tunnel. The high amplitude of compression wave causes high pressure gradients that are responsible for both the aural discomfort of passengers and the impulsive acoustical wave called the miro-pressure wave. This paper provides a numerical study on effects of hood for micro'-'pressure wave reduction. An axisymmetric numerical solver, considering the cross sectional area of Korean Tilting Train eXpress, is used for a transient flow field in the tunnel. Results show that the micro-pressure wave is able to be reduced by a hood. In this results, the maximum reduction of micro--pressure wave is shown at 2L(length), 1.35D(diameter) hood around $56\%$ against the non-hood case.

  • PDF

Reliability Analysis of the Long Caisson Breakwater Considering to the Wave Force Reduction Parameter (파력감소계수를 고려한 장대케이슨 방파제의 신뢰성해석)

  • Lee, Gee Nam;Park, Woo Sun;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.2
    • /
    • pp.121-127
    • /
    • 2017
  • The actual wave is multi-direction irregular wave. In the case of a long structure, a reduction effect of the wave occurs. In this study, in order to grasp the extent to which these influences contribute to the failure probability and compare the existing modular breakwaters to the stability, we used existing modular breakwaters and long caisson breakwaters using wave force reduction parameter to analysis the reliability. As a result, the reliability index of the long caisson breakwater was higher than that of the existing modular caisson breakwater, and it was confirmed that the significant wave height of the design variables had the highest influence. In addition, the reliability analysis was performed according to the change of the mean value of the variables used in the calculation of the wave force reduction parameter. It is confirmed that the relationship between each variable value and the wave force reduction parameter appears in the analysis results.

Wave overtopping control by the use of ecosystem control structures (생태계 제어구조물의 월파제어 특성)

  • 김현주;류청로
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.122-130
    • /
    • 1997
  • Coastal diaster induced by waves and countermeasures were investigated in the viewpoint of reduction of overtopping rate with enviroment in fishing port. The reduction method of wave overtopping rate using ecosystem control structures was proposed and studied on the efficiency by hydraulic and numerical experiments. The estimation models on wave overtopping rate was proposed after comparing previous models with dimensional analysis and experimental results. Control function o fwave overtopping by use of ecosystem controlstructures was simulated and discussed with combining wave shoaling-dissipation-breaking deformation model around ecosystem control structures and newly proposed calculation model for wave overtopping rate. Feasiblilty of ecosystem control structures could be confirmed for reduction of wave overtopping and fisheries-based multipurpose development of coastal zone.

  • PDF

Performance Improvement of Wave Information Retrieval Algorithm Using Noise Reduction

  • Lee, Byung-Gil;Lim, Dong-hee;Kim, Jin-soo
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.3
    • /
    • pp.175-181
    • /
    • 2017
  • This paper describes the upgrade of an existing wave information retrieval algorithm by employing noise reduction in the pixel domain. Several algorithms for collecting wave information parameters from X-band radar image sequences including the wind field and current velocity have been developed over the past three decades. Using these algorithms, a band-pass filter (BPF) is applied to remove the non-wave contribution from the image spectra after the sea surface current velocity has been computed. However, such BPF designs have been both complex and insufficient in removing undesired components in X-band radar images. For this study, to improve the performance of wave information retrieval, an efficient noise reduction algorithm is incorporated into a regular wave information retrieval process. That is, the proposed algorithm was designed for operation in a more proper manner by effectively removing the undesired components in the pixel domain. Experiment results demonstrate that the proposed algorithm produces very close estimates to the buoy data records under undesirable noise conditions.

A Study on Mount Performance for Structure-Borne Noise Reduction in Resiliently Mounted System (탄성지지된 시스템의 마운트 고체음저감 성능에 관한 연구)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kim, Bong-Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2E
    • /
    • pp.50-55
    • /
    • 2007
  • SBN (Structure-Borne Noise) reduction in resiliently mounted machineries are predicted by using mass-spring model and wave model. In mass-spring model, mount is modeled as a spring, while in wave model, mount is considered as an equivalent elastic rod for taking account into longitudinal wave propagation. The predictions for SBN reduction through mounts are compared to the measurements for four different pumps. It is found that the mass-spring model is valid only in low frequency range below few hundred Hz, while for high frequency ranges longitudinal wave propagation in the mount must be considered to explain the measurements. It is also shown that impedance of the floor slightly affects low frequency behaviour in mass-spring and wave model below 50 Hz - 80 Hz, so that in engineering practice the effect of floor impedance may be neglected in computing mount performance.

Analysis of the Effect of Reducing Wave Overtopping by Wave Return Walls (반파 구조물에 의한 월파 저감 효과 분석)

  • Oh, Sang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • The effect of reducing wave overtopping by use of the wave return wall was quantitatively analyzed based on physical experiments. The overtopping discharge for the arc seawall and the inclined seawall was measured and compared with the predictive formula that estimates reduction of overtopping by the wave return wall. When the overtopping discharge was relatively large ($q/{\sqrt{gH^3_s}}>10^{-3}$), the agreement in terms of overtopping reduction rate was fairly good between the prediction and the measurement. For the condition of smaller overtopping than the above criterion, however, the discrepancy was large between the predicted and measured result. In this context, it is required to develop a better formula for estimating reduction of wave overtopping by the wave return wall.

Mode Characteristics Analysis of the SH-EMAT Waves for Evaluating the Thickness Reduction (두께감육 평가를 위한 SH-EMAT파의 모드특성 분석)

  • Park, I.K.;Kim, Y.K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.198-203
    • /
    • 2010
  • In this paper, study on the mode characteristics analysis of the SH-EMAT (shear horizontal, electromagnetic acoustic transducer) waves for evaluating the thickness reduction in plates such as corrosion and friction is presented. Noncontact methods for ultrasonic wave generation and detection have been a great concern and highly demanded due to their capability of wave generation and reception on surface of high temperature or on rough surface. Mode identification of the SH-EMAT wave is carried out in an aluminum plate with thinning defects using time frequency analysis method such as wavelet transform, compared with theoretically calculated group velocity dispersion curve. The changes of various wave features such as the amplitude and the time-of-flight have been observed and the correlations with the thickness reduction have been investigated. Firstly, experiments have been conducted to confirm that it is possible to selectively generate and receive specific desired SH modes. These modes have then been analyzed to select the parameters that are sensitive to the thickness change. The results show that the mode cutoff and the time-of-flight changes are feasible as key parameters to evaluate the thickness reduction.