• Title/Summary/Keyword: Wave pressure characteristics

Search Result 610, Processing Time 0.029 seconds

A Characteristics of pressure Propagation According to Frequency Changes in a Hydraulic Pipeline (유압관로의 주파수변화 따른 압력전파특성)

  • 유영태;나기대;김지환
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.71-79
    • /
    • 2002
  • In this paper, an oil hydraulic pipeline is terminated by both rotary sinusoidal flow generator at upstream oriffice at down stream. The pulsating pressure wave from generated by the rotary sinusoidal flow generator, is measured by using sensor. In the analysis of this paper, a component of the fundamental frequency is obtained by using Laplace transformation.. The experimental and analytical results make clear that (1) viscosity is significant role in hydraulic pipe. (2) When pulsating frequency is matched with the natural frequency, resonance frequency occured periodically. According to the study proposed here, dynamic pressure in a circular oil pipe is expressed in propagation of pressure wave with respect to frequency and Bessel function. The resonance at oil temperature $20^{\circ}$$0^{\circ}C$ in this study. The abrupt change of gain value is due to effect of resonance frequency. The results of experiment are compared with the calculated results, and agreement of both results is fairly good.

Experimental Study of Wall Pressure Fluctuations in the Regions of Flow Transition (천이 경계층 유동의 벽면 변동 압력에 관한 실험적 연구)

  • Shin, Ku-Kyun;Hong, Chin-Suk;Jeon, Jae-Jin;Kim, Sang-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.811-816
    • /
    • 2000
  • It has been long suspected that the transition region may give rise to local pressure fluctuations and radiated sound that are different from those created by the fully-developed turbulent boundary layer at equivalent Reynolds number. Experimental investigation described in this paper concerns the characteristics of pressure fluctuations at the transition. Flush-mounted microphones and hot wires are used to measure the pressure fluctuations and local flow velocities within the boudary layer in the low noise wind tunnel. From this experimental we could observe the spatial and temporal development process of T-S wave using Wigner-Ville method and found the possibility of relation between the characteristic frequency of T-S wave and free stream velocity and the boundary layer thickness based on nondimensional pressure spectra scaled on outer variables.

  • PDF

The Study of Water Hammer in Polybutylene Double Piping System (폴리부틸렌 이중관에서의 워터 햄머 현상에 관한 연구)

  • Kim, Yong-Bong;Yang, Chan-Mo;Lee, Yong-Hwa
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.511-516
    • /
    • 2005
  • This study is to investigate the pressure wave characteristics and the maximum pressure rise generated by instantaneous valve closure at the end of the straightening polybutylene double piping system with header. Experiments were conducted under the following conditions: initial pressure $1{\sim}5$ bar, flow velocity $0.5{\sim}3.0$ m/s and water temperature $25^{\circ}C$.

  • PDF

Characteristics on the Pressure Variations According to the Exhaust Pipe Shape of 4-Stroke Gasoline Engine (4행정 가솔린 엔진의 배기관 형상에 따른 압력 변동 특성)

  • Lee, H.D.;Choi, S.C.;Koh, D.K;Lee, C.J.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.1
    • /
    • pp.13-17
    • /
    • 2004
  • In this study. an experimental study has been introduced for the various exhaust pipe geometry of 4-stroke single cylinder engine. The main experimental parameters are the variation of exhaust pipe diameters and lengths to measure the pulsating flow when the intake and exhaust valves are working. As the results of experimental test, the various exhaust geometry were influenced strongly on the exhaust pressure. As the exhaust pipe diameter was decreased, the amplitude and the number of compression wave in exhaust pressure was increased. According to decreasing pipe diameter, the number of compression wave in exhaust pressure was decreased.

  • PDF

Development of the Cardiovascular Simulator for Pulse Diagnosis Study (맥진연구를 위한 심혈관계 시뮬레이터의 개발)

  • Lee, Ju-Yeon;Shin, Sang-Hoon
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.16 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • Objectives The aim of this study is to develop a cardiovascular simulator that can reproduce blood pressure pulse and blood flow similar to those of the human body. Methods In order to design a system similar to the human cardiovascular system, the required performances were determined by investigating the hemodynamic characteristics of the heart and the arterial system. Main organ to be imitated is heart in simulator. The rest of the system was minimally designed. Also, a blood pressure and blood flow measurement system was developed for measuring the results. Results The developed system showed blood pressure pulse at similar range of the human aorta. The result waveform include primary wave caused by ventricular systole except reflected wave. Conclusions The blood pressure and blow flow patterns were replicated by the simulator. These patterns were similar to those of the human body. The system will play an important role in studying pulse diagnostics.

The Study of Water Hammer in Polybutylene Double Piping System (폴리부틸렌 이중관에서의 수격 현상에 관한 연구)

  • Lee, Yong-Hwa
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.7
    • /
    • pp.380-385
    • /
    • 2009
  • This study is to investigate the pressure wave characteristics and the maximum pressure rise generated by instantaneous valve closure at the end of the straightening polybutylene double piping system with header. Experiments were conducted under the following conditions: initial pressure $0.1{\sim}0.5$ MFa, flow velocity $0.5{\sim}3.0$ m/s and water temperature $25^{\circ}C$.

A Study of Hydraulic Characteristics in Front of the Seawall under the Coexistence of Wave and Wind (파랑과 바람 공존장에서의 호안 전면 수리특성 검토)

  • Shim, Kyu-Tae;Kim, Kyu-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.575-586
    • /
    • 2020
  • In this study, a two-dimensional hydraulic model test was conducted to examine the hydraulic phenomena that occur around the seawall when wave and wind coexist. Based on recent seawall repair and reinforcement examples, the experimental section was constructed under the condition of installing wave dissipation blocks on the safety surface of four different representative seawalls. Water level fluctuation, reflection, overtopping and wave pressure characteristics according to external force change were reviewed. It was confirmed that the top concrete shape of the seawall is the most important factor of the hydraulic characteristics that appear in front of the seawall, and the tendency is more pronounced when wind acts. Even in the case of vertical type seawall, when wind of 3 m/s~5 m/s occurs, the amount of overtopping increases to about 5%~12%. In the case of wave pressure, it was confirmed from the experimental results that the value increased from about 1.5 to 2.2 times in front of the top of concrete block. In addition, it was confirmed that when the shape of the seawall was different, the range of change in the hydraulic characteristics appeared larger. Therefore, when designing a seawall of a new shape, a more detailed review of the hydraulic characteristics should be accompanied based on these experimental results.

Spray Characterization and Flow Visualization of the Supersonic Liquid Jet by a Projectile Impingement (발사체 충돌에 의한 초음속 액체 제트의 분사 특성 및 유동 가시화)

  • Shin, Jeung-Hwan;Lee, In-Chul;Koo, Ja-Ye;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.2
    • /
    • pp.27-33
    • /
    • 2011
  • Supersonic liquid jet discharged from a nozzle has been investigated by using a ballistic range which is composed of high-pressure tube, pump tube, launch tube and liquid storage nozzle. High-speed Schlieren optical method was used to visualize the supersonic liquid jet flow field containing shock wave system, and spray droplet diameter was measured by the laser diffraction method. Experiment was performed with various types of nozzle to investigate the major characteristics of the supersonic liquid jet operating at the range of total pressure of 0.8 from 2.14 GPa. The results obtained shows that shock wave considerably affects the detailed atomization process of the liquid jet and as the nozzle diameter decreases, the shock wave angle and the averaged SMD of spray droplet tends to decrease.

Space-Time Characteristics of the Wall Shear-Stress Fluctuations in an Axial Turbulent Boundary Layer with Transverse Curvature

  • Shin, Dong-Shin;Lee, Seung-Bae;Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1682-1691
    • /
    • 2005
  • Direct numerical simulation database of an axial turbulent boundary layer is used to compute frequency and wave number spectra of the wall shear-stress fluctuations in a low-Reynolds number axial turbulent boundary layer. One-dimensional and two-dimensional power spectra of flow variables are calculated and compared. At low wave numbers and frequencies, the power of streamwise shear stress is larger than that of spanwise shear stress, while the powers of both stresses are almost the same at high wave numbers and frequencies. The frequency/streamwise wave number spectra of the wall flow variables show that large-scale fluctuations to the rms value is largest for the stream wise shear stress, while that of small-scale fluctuations to the rms value is largest for pressure. In the two-point auto-correlations, negative correlation occurs in streamwise separations for pressure, and in span wise correlation for both shear stresses.

Space-Time Characteristics of the Wall Shear-Stress Fluctuations in a Low-Reynolds Number Axial Turbulent Boundary Layer (축방향 난류경계층에서 벽면마찰 섭동량의 공간 및 시간에 따른 특성)

  • 신동신
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.895-901
    • /
    • 2003
  • Direct numerical simulation database of an axial turbulent boundary layer is used to compute frequency and wave number spectra of the wall shear-stress fluctuations in a low-Reynolds number axial turbulent boundary layer. One-dimensional and two-dimensional power spectra of flow variables are calculated and compared. At low wave numbers and frequencies, the power of streamwise shear stress is larger than that of spanwise shear stress, while the powers of both stresses are almost the same at high wave numbers and frequencies. The frequency/streamwise wave number spectra of the wall flow variables show that large-scale fluctuations to the ms value is largest for the streamwise shear stress, while that of small-scale fluctuations to the rms value is largest for pressure. In the two-point auto-correlations, negative correlation occurs in streamwise separations for pressure and spanwise shear stress, and in spanwise correlation for both shear stresses.