• Title/Summary/Keyword: Wave observation buoy

Search Result 36, Processing Time 0.033 seconds

Development of an Electro-Optic Mooring System for Oceanographic Buoy

  • Keat, Kok-Choon;Park, Soo-Hong
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.176-181
    • /
    • 2009
  • This study is part of a project to develop and improve mooring systems for oceanographic use that include an electro-optical sensor, 1MHz Nortek Aquadopp Doppler Profiler and AIRMAR multipurpose Sensor. The adaption of Doppler current profilers to measure directional wave spectra has provided a new instrumentation approach to coastal and nearshore oceanographic studies. The HEIOB is developed are light weight and of a compact design, and can be easily installed in marine environment. Since there are no base station and gateways in marine environments, we selected CDMA and Orbcomm to send the data information. Therefore, the data can be sent by either e-mail service or Short Message Service (SMS). This paper will present some of scientific sensor results regarding real-time oceanographic and meteorological parameters such as wind spend, wind direction, wave direction, and etc. The modeling and test results highlight the engineering challenges associated with designing these systems for long lifetimes. It can also be used in future application to build wave observation buoy network in real-time using multiple ubiquitous buoys that share wave data and allow analysis of multipoint, multi-layer wave profiler.

Measurement and Quality Control of MIROS Wave Radar Data at Dokdo (독도 MIROS Wave Radar를 이용한 파랑관측 및 품질관리)

  • Jun, Hyunjung;Min, Yongchim;Jeong, Jin-Yong;Do, Kideok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.2
    • /
    • pp.135-145
    • /
    • 2020
  • Wave observation is widely used to direct observation method for observing the water surface elevation using wave buoy or pressure gauge and remote-sensing wave observation method. The wave buoy and pressure gauge can produce high-quality wave data but have disadvantages of the high risk of damage and loss of the instrument, and high maintenance cost in the offshore area. On the other hand, remote observation method such as radar is easy to maintain by installing the equipment on the land, but the accuracy is somewhat lower than the direct observation method. This study investigates the data quality of MIROS Wave and Current Radar (MWR) installed at Dokdo and improve the data quality of remote wave observation data using the wave buoy (CWB) observation data operated by the Korea Meteorological Administration. We applied and developed the three types of wave data quality control; 1) the combined use (Optimal Filter) of the filter designed by MIROS (Reduce Noise Frequency, Phillips Check, Energy Level Check), 2) Spike Test Algorithm (Spike Test) developed by OOI (Ocean Observatories Initiative) and 3) a new filter (H-Ts QC) using the significant wave height-period relationship. As a result, the wave observation data of MWR using three quality control have some reliability about the significant wave height. On the other hand, there are still some errors in the significant wave period, so improvements are required. Also, since the wave observation data of MWR is different somewhat from the CWB data in high waves of over 3 m, further research such as collection and analysis of long-term remote wave observation data and filter development is necessary.

Deploying a Wireless Sensor Network for Oceanography using ZigBee

  • Park, Soo-Hong;Keat, Kok-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.140-145
    • /
    • 2008
  • We recently developed new offshore observation system using USN buoy, widely used to measure the directional properties of ocean wave, seawater temperature, UV light, longitude and latitude of the buoy using GPS module. This paper also documents the development and implementation of a buoy network for acquisition of data of base station with buoys. The major phases of the project include specification of the network, physical construction of network nodes, software development for control of nodes, and testing of network performance. We described some of the practical issues involved in designing, building and deploying a buoy network for oceanographic monitoring. The paper explains some of the design decisions and their consequences, and some of the lessons learned from a first lesson network trial at sea.

Correlation between Spring Weather Factors and Local Wind Waves in the Nakdong River Estuary, Korea (낙동강 하구역 해양물리환경에 미치는 영향인자 비교분석(II) - 춘계 국지 해양파랑과 기상인자 -)

  • Yoo, Chang-Il;Yoon, Han-Sam;Park, Hyo-Bong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.119-125
    • /
    • 2008
  • The aim of this study was to determine the characteristics of wave transformation in the shallow water of the Nakdong River estuary due to variations in air pressure, air temperature, wind speed, and wind direction. We analyzed the correlation between weather factors and wind waves in offshore regions near Geoje Island and the Nakdong River estuary in April and May 2007. The weather and wind wave data were obtained from the automatic ocean observation buoy near Geoje Island operated by the Korean Meteorological Administration (KMA). For the estuary region, the wind wave information was the result of field observations, and weather data were obtained from the Busan Meteorological Station. Field observations of water waves in April and May showed that the maximum wave height decreased by about 2.2 m. M oreover, wave height decreased significantly by about 1.3 m due to the reduction in wave energy caused by the water waves propagating from Geoje buoy to the Nakdong River estuary. We conclude that offshore or wind waves coming into the Nakdong River estuary showed considerable height variation due to the prevailing weather conditions, especially wind speed and direction. In particular, headwinds tended to decrease the wave size in inverse proportion to the wind speed.

  • PDF

The Modulation of Currents and Waves near the Korean Marginal seas computed by using MM5/KMA and WAVEWATHC-III model

  • Seo, Jang-Won;Chang, You-Soon
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.37-42
    • /
    • 2003
  • We have analyzed the characteristics of the sea surface winds and wind waves near the Korean marginal seas on the basis of prediction results of the sea surface winds from MM5/KMA model, which is being used for the operation system at the Korea Meteorological observation buoy data to verify the model results during Typhoon events. The correlation coefficients between the models and observation data reach up to about 95%, supporting that these models satisfactorily simulate the sea surface winds and wave heights even at the coastal regions. Based on these verification results, we have carried out numerical experiments about the wave modulation. When there exist an opposite strong current for the propagation direction of the waves or wind direction, wave height and length gets higher and shorter, and vice versa. It is proved that these modulations of wave parameters are well generated when wind speed is relatively week.

  • PDF

3Meter Disc Buoy with Satellite Communications Infrastructure

  • Park, Soo-Hong;Keat, Kok Choon
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.249-254
    • /
    • 2008
  • Moored ocean buoys are technically feasible approach for making sustained time series observation in the oceans and will be an important component of any long-term ocean observing system. The 3M disc buoy carried Zeno 3200, MCCB, Orbcomm, Global Star and Bluetooth module. The deployments have relied on Orbcomm and Global Star as the primary satellite communications system. In addition to detailing our practical experience in the use of Orbcomm and Global Star as high latitudes, we will present some of scientific sensor results regarding real-time oceanographic and meteorological parameters such as wind speed, wave height and etc. In this paper we present the design and implementation of a small-scale buoy sensor network. One of the major challenges is that the network is hard to access after its deployment and hence both hardware and software must be robust and reliable.

Offshore Wave, Tsunami and Tide Observation Using GPS Buoy

  • Nagai, Toshihiko;Ogawa, Hideaki;Terada, Yukihiro;Kato, Teruyuki;Kudaka, Masanobu
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.137-142
    • /
    • 2003
  • Offshore observation of tsunami and storm surge before arriving to the coast is very important fur coastal disaster prevention. But up to ten years ago, coastal tide stations had been supposed to be the only means to observe tsunami and storm surge profile, fir difficulty of offshore observation (Goda.et.al., 2002). Recently seabed installed coastal wave gauges have been repeatedly reported to successfully observe various tsunami profiles by conducting continuous data acquisition (Goda.et.al., 2001 : Nagai, 2002a; Nagai.et.al, 1996, 2000, 2002b). (omitted)

  • PDF

The Application of Marine X-band Radar to Measure Wave Condition during Sea Trial

  • Park, Gun-Il;Choi, Jae-Woong;Kang, Yun-Tae;Ha, Mun-Keun;Jang, Hyun-Sook;Park, Jun-Soo;Park, Seung-Geun;Kwon, Sun-Hong
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.4
    • /
    • pp.34-48
    • /
    • 2006
  • The visual observation of wave condition depends on the observer's skill and experience. Also, the environmental conditions such as light and cloud heavily influence the visual measurement. In the speed test of sea trial, the wave measurement should be objective and accurate. In this paper, the problems of visual measurement and their effects on speed test are described. To overcome those problems, we developed the wave measurement system using commercial marine X-band radar, WaveFinder. The system installed at inland base was calibrated by waverider buoy and then the system's operability was defined. Onboard tests had also been performed three times for formal wave measurement to correct the ship speed. The results illustrated very good agreement with visual observation by experts. It can be concluded that the system would be useful to measure wave and swell information for the sea trial, irrespective of day and night.

A Study on Calibration of Underestimated Wave Heights Measured by Wave and Tide Gauge (WTG) (저평가된 수압식 파고계(WTG) 관측 파고값 보정방안 연구)

  • Jeong, Weon Mu;Chang, Yeon S.;Oh, Sang-Ho;Baek, Won Dae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.296-306
    • /
    • 2020
  • It has been reported that the wave heights measured by Wave and Tide gauges (WTG) have been underestimated, and thus it is important to improve its measuring accuracy for enhancing estimation of harbor tranquility. In this study, the significant wave heights from WTG were calibrated using measured data from AWAC and Waverider buoys moored at the same four locations with the WTG. It was observed that the product of significant wave height and peak wave period, HT, was not underestimated but linearly proportional between the measurements by two instruments. This linearity was applied to develop 3rd order polynomial functions that best represented the relationship between HT and significant wave heights measured by WTG. These functions were then applied to calibrate the WTG significant wave heights that were lower than 0.7 m, the critical value established for the low waves in this study. The results showed that the linearity between the AWAC (or Waverider buoy) and calibrated wave heights were improved, and the magnitude of underestimated WTG wave heights were increased to be more realistic. The results of this study are expected to be effectively applied for other data sets obtained by WTG only, to increase the observation accuracy of WTG and to improve the estimation of harbor tranquility.

Coastal Wave Hind-Casting Modelling Using ECMWF Wind Dataset (ECMWF 바람자료를 이용한 연안 파랑후측모델링)

  • Kang, Tae-Soon;Park, Jong-Jip;Eum, Ho-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.599-607
    • /
    • 2015
  • The purpose of this study is to reproduce long-term wave fields in coastal waters of Korea based on wave hind-casting modelling and discuss its applications. To validate wind data(NCEP, ECMWF, JMA-MSM), comparison of wind data was done with wave buoy data. JMA-MSM predicted wind data with high accuracy. But due to relatively longer period of ECMWF wind data as compared to that of JMA-MSM, wind data set of ECMWF(2001~2014) was used to perform wave hind-casting modelling. Results from numerical modelling were verified with the observed data of wave buoys installed by Korea Meteorological Administration(KMA) and Korea Hydrographic and Oceanographic Agency(KHOA) on offshore waters. The results agree well with observations at buoy stations, especially during the event periods such as a typhoon. Consequently, the wave data reproduced by wave hind-casting modelling was used to obtain missing data in wave observation buoys. The obtained missing data indicated underestimation of maximum wave height during the event period at some points of buoys. Reasons for such underestimation may be due to larger time interval and resolution of the input wind data, water depth and grid size etc. The methodology used in present study can be used to analyze coastal erosion data in conjunction with a wave characteristic of the event period in coastal areas. Additionally, the method can be used in the coastal disaster vulnerability assessment to generate wave points of interest.