• Title/Summary/Keyword: Wave generator design

Search Result 75, Processing Time 0.028 seconds

An Experimental Study on the Behavior of Capping Material by Sea Waves (파랑에 의한 피복재의 거동에 관한 실험적 연구)

  • Kong, Jinyoung;Kim, Youngtak;Kang, Jaemo;Lee, Jangguen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.7
    • /
    • pp.51-58
    • /
    • 2014
  • In-situ capping is a method to stabilize contaminated sediments by isolation. Few researches on the in-situ capping have been performed, although the engineering approach is still required to prevent the release of contaminants. In this study, hydraulic model test were conducted by using a wave generator to observe the change of cap thickness which is important factor in design of capping. Sands with particle size between 0.075 to 2 mm as capping materials were used to observe the change of capping thickness by waves. The experimental results show that the surface of capping materials is similar to wave form. The more wave height increases, the more erosion of capping materials increases.

PD Diagnosis on High Voltage Rotating by Using New Prototype Patch Antenna Sensor (prototype 패치 안테나를 이용한 고압 회전기의 부분방전 측정 연구)

  • Lwin, K.S.;Shin, D.H.;Lim, K.J.;Kong, T.S.;Kim, H.D.;Park, N.J.;Park, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.04b
    • /
    • pp.169-171
    • /
    • 2007
  • We studied the partial discharge detecting by sensing electromagnetic wave emitted from the partial discharge source in the HV Rotating Machine with the new prototype patch antenna sensor. In this study, we design new type of patch antenna based on microstrip technology and make many experiments of elaine testing compare with the existing HFCT and EM probe on stator winding of HV generator in the laboratory. This paper will mention comparison of experimental results based on the three kinds of sensors.

  • PDF

Analysis of Three-phase Rectified Wave Forms by Analog Computer (Analog전자계산기에 의한 3상 정류 파형의 해석)

  • Yang, Hung Suk;Park, Min Ho
    • 전기의세계
    • /
    • v.14 no.2
    • /
    • pp.1-7
    • /
    • 1965
  • This paper describes the commutation current and ignition angle of current which occures in the combination of silicon rectifier with synchronous generator when the constants of rectifier circuits parameters are changed. This is precisely accomplished by setting-up the analog computer with voltage generating circuits and non-linear elements circuits. When the characteristics of rectification are properly selected in the simulation, this method is able to extend to the connection of SCR and electric machinery. We also expect that this method is helpful to the investigation of characteristics, and design of alternating exciters, self-excited synchronous generators instead of D-C machines.

  • PDF

Wireless Sensor Network Design for Industrial Applications and the Sound Wave Detection in Acoustic Cleaning Systems (산업용 무선센서네트워크 설계와 음향 세척 장치의 음파 검출을 위한 응용)

  • Kim, A Yeon;Han, Jae Jun;Kim, Dong Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.223-229
    • /
    • 2014
  • The acoustic cleaning system is widely used to remove foreign materials in factories, such as thermal power plants and incinerators. However, the acoustic cleaning systems tend to be clogged by foreign materials. In this paper, we develop a wireless sensor network for the sound wave detection in order to monitor proper operations in the acoustic cleaning systems. We observe that the developed wireless sensor network for the wave detection shows a stable operation in various industrial environments of wide temperature ranges. We also develop a data gathering device, which displays the current status of the sound generator and several values detected from the wireless sensor.

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.

An Experimental Study on the Stability of Breakwater Head by the Wave Directional Effects (입사파의 방향성효과에 의한 방파제 제두부의 안정성에 관한 실험적 연구)

  • SOHN Byung-Kyu;KIM Hong-Jin;RYU Cheong-Ro
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.713-719
    • /
    • 2001
  • The aim of this study is to check the application criteria of the conventional techniques and clarify the effects of breaker depth, seabed conditions on the stability in relation to the effects of uncertainty of storm duration and directional irregular waves. The typical damage modes were divided by the direct wave force on the armor unit and by the local scouring around the toe of a breakwater head by the model experiments. The destruction modes are defined, and some criteria on the damage modes and scouring/deposition at the toe of a breakwater head in relating the wave-bottom-structural conditions can be checked using the multi-directonal irregular wave generator system. According to the results, it is emphasized that the 3-D effects on the stability should be analyzed in the design of multi-purpose/function coastal structures in consideration of the evaluation of spatial variation of damage modes and hydraulic characteristics as well as the wave distribution along the structures.

  • PDF

A Study on Harmonic Resonance in a DFIG Wind Turbine-generator Connected to a Distribution Power Line (DFIG 풍력발전기가 연계된 배전선로의 고조파 공진 특성에 관한 연구)

  • Choi, Hyung-Joo;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1383-1389
    • /
    • 2013
  • There were telecommunication noise and malfunctions of the electronic devices occurred over a wide area due to the high harmonic voltage and/or current levels of the Back-to-back converter in the DFIG wind power system even though the magnitude of all harmonics is within the international standards. The triangular carrier signals of the PWM used in the power converter system is related to the telecommunication noise because they are in the range of audible frequencies and amplified by a variety of the standing waves that were excited by harmonic voltage sources in the weak grid system such as a long distance distribution transmission lines. This paper describes the characteristics of the harmonics in the wind turbine-generator, numerical analysis and simulation of the harmonics resonance phenomena in the distribution lines as well as measuring induced voltage of the telecommunication lines in parallel with power lines in order to verify the root cause of the telecommunication noise. These noise problems can occur in a wind turbine power system with a non-linear converter at any time, as well as photovoltaic power system. So, the preliminary review of suitable filter devices and switching frequencies of the PWM have to be required by considering the stability of the controller at the design stage but as part of the measures the effect of the telecommunication cable shields was analyzed by comparing the measured data between multi-conductor with/without shields so as to attenuate the sources of the harmonics voltage induced into the telecommunication lines and to apply the most cost-effective measures in the field.

The analysis of the detection probability of FMCW radar and implementation of signal processing part (차량용 FMCW 레이더의 탐지 성능 분석 및 신호처리부 개발)

  • Kim, Sang-Dong;Hyun, Eu-Gin;Lee, Jong-Hun;Choi, Jun-Hyeok;Park, Jung-Ho;Park, Sang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2628-2635
    • /
    • 2010
  • This paper analyzes the detection probability of FMCW (Frequency Modulated Continuous Wave) radar based on Doppler frequency and analog-digital converter bit and designs and implements signal processing part of FMCW radar. For performance evaluation, the FMCW radar system consists of a transmitted part and a received part and uses AWGN channel. The system model is verified through analysis and simulation. Frequency offset occurs in the received part caused by the mismatching between the received signal and the reference signal. In case of Doppler frequency less than about 38KHz, performance degradation of detection does not occur in FMCW radar with 75cm resolution The analog-digital converter needs at least 6 bit in order not to degrade the detection probability. And, we design and implement digital signal processing part based on DDS chip of digital transmitted signal generator for FMCW radar.

Design and Implementation K-Band EWRG Transceiver for High-Resolution Rainfall Observation (고해상도 강수 관측을 위한 K-대역 전파강수계 송수신기 설계 및 구현)

  • Choi, Jeong-Ho;Lim, Sang-Hun;Park, Hyeong-Sam;Lee, Bae-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.646-654
    • /
    • 2020
  • This paper is to develop an electromagnetic wave-based sensor that can measure the spatial distribution of precipitation, and to a electromagnetic wave rain gauge (hereinafter, "EWRG") capable of simultaneously measuring rainfall, snowfall, and wind field, which are the core of heavy rain observation. Through this study, the LFM transmission and reception signals were theoretically analyzed. In addition, In order to develop a radar transceiver, LFM transceiver design and simulation were conducted. In this paper, we developed a K-BAND pulse-driven 6W SSPA(Solid State Power Amplifiers) transceiver using a small HMIC(Hybrid Microwave Integrated Circuit). It has more than 6W of output power and less than 5dB of receiving NF(Noise Figure) with short duty of 1% in high temperature environment of 65 degrees. The manufactured module emits LFM and Square Pulse waveform with the built-in waveform generator, and the receiver has more than 40dB of gain. The transceiver developed in this paper can be applied to the other small weather radar.

Design of K-Band Radar Transceiver for Tracking High Speed Targets (고속 표적 추적을 위한 K-대역 레이다 송수신기 설계)

  • Sun, Sun-Gu;Lee, Jung-Soo;Cho, Byung-Lae;Lee, Jong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1304-1310
    • /
    • 2010
  • This study is to design FMCW radar transceiver of K-band which is used to detect and track approaching high speed targets with low altitude. The transmitter needs high output power due to small RCS targets and wide beamwidth of transmit antenna. Multi-channel receivers are required to detect and track targets by interferometer method. Transmitter consists of high power amplifier, waveguide switch, and frequency up-converter. Receiver is composed of five channel receivers, up and down converters, X-band local oscillator and waveform generator. Before manufacturing it, the proposed architecture of transceiver is proved by modeling and simulation using several parameters. Then, it is manufactured by using industrial RF components. The performance parameters are measured through experiment. In the experiment, transmitting power and receiver gain were measured with 39.64 dBm and 29.1 dB, respectively. All other parameters in the specification were satisfied as well.