• Title/Summary/Keyword: Wave frequency

Search Result 4,100, Processing Time 0.031 seconds

Modification of CPW Pad Design for High fmax InGaAs/InAlAs Metamorphic High Electron Mobility Transistors (높은 $f_{max}$ 를 갖는 InGaAs/InAlAs MHEMT 의 Pad 설계)

  • Choi, Seok-Gyu;Lee, Bok-Hyung;Lee, Mun-Kyo;Kim, Sam-Dong;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.599-602
    • /
    • 2005
  • In this paper, we have performed a study that modifies the CPW Pad configurations to improve an $f_{max}$ characteristic of metamorphic HEMT. To analyze the CPW Pad structures of MHEMT, we use the ADS momentum simulator developed by $Agilent^{TM}$. Comparing the employed structure (G/W = 40/100 m), the optimized structure (G/W = 20/25 m) of CPW MHEMT shows the increased $S_{21}$ by 2.5 dB, which is one of the dominant parameters influencing the $f_{max}$ of MHEMT. To compare the performances of optimized MHEMT with the employed MHEMT, DC and RF characteristics of the fabricated MHEMT were measured. In the case of optimized CPW MHEMT, the measured saturated drain current density and transconductance $(g_m)$ were 693 mA/mm and 647 mS/mm, respectively. RF measurements were performed in a frequency range of $0.1{\sim}110$ GHz. A high $S_{21}$ gain of 5.5 dB is shown at a millimeter-wave frequency of 110 GHz. Two kinds of RF gains, $h_{21}$ and maximum available gain (MAG), versus the frequency, and a cut-off frequency ($f_t$) of ${\sim}154$ GHz and a maximum frequency of oscillation ($f_{max}$) of ${\sim}358$ GHz are obtained, respectively, from the extrapolation of the RF gains for a device biased at a peak transconductance. An optimized CPW MHEMT structure is one of the first reports among fabricated 0.1 m gate length MHEMTs.

  • PDF

A Study on Design of a super wide-band EM wave absorber for a general purpose anechoic chamber (전파무향실용 초광대역 전파흡수체 설계에 관한 연구)

  • Kim, Dae-Hun;Kim, Dong-Il
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.415-420
    • /
    • 2005
  • To construct an anechoic chamber for EMI test satisfying some international standards, it has been recognized that the absorption characteristics of the EM wave absorber must have more than 20 dB over the frequency band from 30 MHz to 18 GHz. In this paper, an EM wave absorber with super wide-band frequency characteristics was proposed and designed in order to satisfy the above requirements by using the EMCM[1]. As a result, the proposed absorber has absorption characteristics more than 20 dB over the frequency band from 30 MHz to more than 20 GHz.

  • PDF

Residual Stress Measurement by L$_{CR}$ Wave and Acoustic Emission Characteristics from Fatigue Crack Propagation in STS316L Weldment (STS316L용접재의 표면파에 의한 잔류응력 측정과 균열진전시의 음향방출특성)

  • 남기우;박소순;안석환
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 2003
  • In this study, the residual stress and the acoustic emission Charactreistics from fatigue crack propagation were investigated, bused on the welded material of STS316L. The residual stress of welding locations could be evaluated by ultrasonic parameters, such as L$_{CR}$ wave velocity and L$_{CR}$ wave frequency; the residual stress between base metal and weld metal was evaluated. In the fatigue tests, three types of signals were observed, regardless of specimen condition, base metal, and weld metal. Based on NDE analysis of AE signals by the time-frequency analysis method, it should also be possible to evaluate, in real-time, the crack propagation and final fracture process, resulting from various damages and defects in welded structural members.

FDTD Analysis of Electromagnetic Wave Propagation in an Inhomogeneous Ionosphere under Arbitrary-Direction Geomagnetic Field

  • Kweon, Jun-Ho;Park, Min-Seok;Cho, Jeahoon;Jung, Kyung-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.212-214
    • /
    • 2018
  • The finite-difference time-domain (FDTD) model was developed to analyze electromagnetic (EM) wave propagation in an inhomogeneous ionosphere. The EM analysis of ionosphere is complicated, owing to various propagation environments that are significantly influenced by plasma frequency, cyclotron frequency, and collision frequency. Based on the simple auxiliary differential equation (ADE) technique, we present an accurate FDTD algorithm suitable for the EM analysis of complex phenomena in the ionosphere under arbitrary-direction geomagnetic field. Numerical examples are used to validate our FDTD model in terms of the reflection coefficient of a single magnetized plasma slab. Based on the FDTD formulation developed here, we investigate EM wave propagation characteristics in the ionosphere using realistic ionospheric data for South Korea.

Electromagnetic Modeling of Quasi-Square Open Metallic Ring Frequency Selective Surface Using Wave Concept Iterative Procedure

  • Titaouine, Mohammed;Raveu, Nathalie;Neto, Alfredo Gomes;Baudrand, Henri
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.77-79
    • /
    • 2009
  • The wave concept iterative procedure (WCIP) is used to analyze a quasi-square open metallic ring frequency selective surface (FSS). The quasi-square open metallic ring FSS is dual-polarized. When the incident plane wave is polarized in a direction parallel to the FSS' coupled parallel strips, it shows two rejecting bands. Moreover, another rejecting band can be obtained if the source plane wave is perpendicularly polarized with respect to the FSS' coupled parallel strips. The three resonant frequencies are inversely proportional to the length of the FSS' coupled strips to provide an easy fine tuning of the FSS structure. The simulated results obtained using WCIP are compared to the measured results, and a good agreement is reported.

  • PDF

Radiation Problem Involving Two-layer Fluid in Frequency-Domain Numerical Wave Tank Using Artificial Damping Scheme (주파수 영역에서 인공감쇠기법을 활용한 복층 유체의 수치조파수조 방사 문제)

  • Min, Eun-Hong;Koo, Weoncheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • There are two wave modes induced by an oscillating body on the free surface of a two-layer fluid: the barotropic and baroclinic modes. To investigate the generated waves composed of two modes, a radiation problem involving a heaving rectangular body was solved in a numerical wave tank. A new artificial damping zone scheme was developed and applied in the frequency-domain analysis. The performance of this damping scheme was compared with given radiation boundary conditions for various conditions. The added mass and radiation damping coefficients for the heaving rectangular body were also calculated for various fluid-density ratios.

Injection Locked Synchronization Characteristics of a Millimeter Wave Second Harmonic Oscillator (밀리미터파 대역 제2고조파 출력 발진기의 주입동기 특성)

  • Choi, Young-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1700-1705
    • /
    • 2013
  • A second harmonic millimeter wave oscillator utilizing sub-harmonic injection-synchronization is presented. A 8.7GHz oscillator with MES-FET is designed, and is driven as a harmonic output oscillator at 17.4GHz by means of sub-harmonic injection-synchronization. The oscillator operates as a multiplier as well as a oscillator in this scheme. Adopting this method, a high sable, high frequency millimeter wave source is obtainable even though self-oscillating frequency of an oscillator is relatively low. The range of injection-synchronization is about 26MHz, and is proportional to the input sub-harmonic power. The spectrum analysis of the 2nd harmonic output frequency shows remarkably decreased the phase noise level.

A Study on Design and Fabrication of Complex Type EM Wave Absorber with Super Wide-band Characteristics

  • Kim Dae-Hun;Kim Dong-Il;Choi Chang-Mook;Son Jun-Young
    • Journal of Navigation and Port Research
    • /
    • v.30 no.2
    • /
    • pp.161-166
    • /
    • 2006
  • In order to construct an Anechoic Chamber satisfying international standards for EMI testing, it has been recognized that the absorption characteristics of the EM wave absorber must be higher than 20 dB over the frequency band from 30 MHz to 18 GHz. In this paper, an EM wave absorber with super wide-band frequency characteristics was proposed and designed in order to satisfy the above requirements by using the Equivalent Material Constant Method(EMCM) and Finite Difference Time Domain(FDTD). The proposed absorber is to attach a pyramidal absorber onto a hemisphere-type absorber on a cutting cone-shaped ferrite. As a result, the proposed absorber has absorption characteristics higher than 20 dB over the frequency band from 30 MHz to more than 20 GHz.

Transport Characteristics according to Flexural Beam Shape for the Ultrasonic Transport Systems (초음파 물체 이송시스템에서 Flexural Beam 의 형태 변화에 따른 이송특성에 관한 연구)

  • Shin, Byung-Su;Jeong, Sang-Hwa;Cha, Kyung-Rae
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1608-1613
    • /
    • 2003
  • In the semiconductor and the optical industry, a new transport system which can replace the conventional sliding system is required. These systems are driven by the magnetic field and the conveyer belt. The magnetic field damages semiconductor and contact force scratches the optical lens. The ultrasonic wave driven system can solve these problems. In this paper, the object transport system using the excitation of ultrasonic wave is proposed. The experiments for finding the optimal excitation frequency, finding phasedifference between two ultrasonic wave generators are performed. The relationship of transporting speed according to the change of flexural beam shape is verified. In addition, the system performance for practical use is evaluated.

  • PDF

Simplified formulas of heave added mass coefficients at high frequency for various two-dimensional bodies in a finite water depth

  • Koo, Weoncheol;Kim, Jun-Dong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.115-127
    • /
    • 2015
  • The aim of this study is to develop a simplified formula for added mass coefficients of a two-dimensional floating body moving vertically in a finite water depth. Floating bodies with various sectional areas may represent simplified structure sections transformed by Lewis form, and can be used for floating body motion analysis using strip theory or another relevant method. Since the added mass of a floating body varies with wave frequency and water depth, a correction factor is developed to take these effects into account. Using a developed two-dimensional numerical wave tank technique, the reference added masses are calculated for various water depths at high frequency, and used them as basis values to formulate the correction factors. To verify the effectiveness of the developed formulas, the predicted heave added mass coefficients for various wetted body sections and wave frequencies are compared with numerical results from the Numerical Wave Tank (NWT) technique.