• Title/Summary/Keyword: Wave force analysis

Search Result 388, Processing Time 0.043 seconds

An Experimental Study for the Wave Exciting Force of a Truss Spar (Truss Spar의 파강제력에 대한 실험적 연구)

  • JO HYO-JAE;GOO JA-SAM;CHOI HAN-SUK;PARK JU-YONG;OH TAE-WON;KIM BYUNG-WOO;HA MUN-KEUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.16-21
    • /
    • 2004
  • This study presents the wave forces for spar platforms. The advantage of a spar platform is that it is easy to manufacture and has excellent to motion characteristics. It is important to precisely determine the wave force acting on spar platforms for their basic design of them. We measur the wave exciting force for both the classic spar and truss spar models, and accomplish the numerical calculation using diffraction theory. The results show that experimental values have good agreement with theoretical values. However it is difficult to accurately estimate the value considering the heave plate of truss spar due to the viscosity.

An Experimental Study for the Wave Exciting Force of a Truss Spar (Truss Spar의 파강제력에 대한 실험적 연구)

  • Jo, Hyo-Jae;Goo, Ja-Sam;Oh, Tae-Won;Kim, Byung-Won;Ha, Mun-Keun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.261-266
    • /
    • 2002
  • This study presents the wave forces for spar platforms. The advantage of spar platform is that it is easy to manufacture and excellency to motion characteristics. It is important to estimate exactly wave force acting spar platforms for basic design of them. We measured the wave exciting force for classic spar and truss spar model, and accomplished the numerical calculation using diffraction theory. The results show that experimental values are good agreement with theoretical values. But it is difficult to estimate accurate value considering the heave plate of truss spar due to the viscosity.

  • PDF

Analysis of Wind and Wave Force acting on the Foundation of the Offshore Wind Tower (해상 타워의 기초에 작용하는 풍력과 파력 해석)

  • Kim, Nam-Hyeong;Go, Myeong-Jin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.273-274
    • /
    • 2013
  • Recently, as offshore wind towers are developed, the size of wind towers have become larger and larger, and offshore wind towers are exposed to various external forces such as wave and current compared with onshore wind towers. Thus, the stability of offshore wind towers is more required than onshore wind towers. In this study, when the wind celerity of 60m/s blows to the cylinder, cone, and stair typed towers, the wind and wave forces on foundation are calculated by p-y relation.

  • PDF

Nonlinear Wave Transformation and Dynamic Behaviors of Semi-Submerged Air-Chamber Floating Breakwater (반잠수압기형부방파제의 비선형파랑변형 및 동적거동에 관한 연구)

  • Kim, D.S.
    • Journal of Korean Port Research
    • /
    • v.10 no.1
    • /
    • pp.25-36
    • /
    • 1996
  • Generally, it is pointed out that a nonlinear analysis is needed to estimate accurately the water surface fluctuation and dynamic responses of a floating structure in case of large wave reflection. In this study, a frequency-domain method is applied and newly developed to analyze the nonlinear characteristics of the air-chamber floating breakwater. The air-chamber floating breakwater in this study can control well the wave transformation, motions of the structure and its natural frequency by adjusting the air depth in the chamber. Experiments are carried out to verify the numerical results. It is appeared that the mean water level is setup in the anti-node and setdown in the node, while the nonlinearity in wave profile is larger in the node than in the anti-node. Because of vertical mooring system, the sway, especially the time-independent nonlinear component, plays predominant role in the motion. On the other hand, the time-dependent component, as well as the time-independent one to the tensile force of mooring line contributes greatly, and the time averaged value presents tensional force oriented to the onshore side due drift force.

  • PDF

Dynamic Nonlinear Analysis of Marine Cables Under Wave Force and Earthquake Force (파랑하중 및 지진하중을 받는 해양케이블의 동적 비선형 해석)

  • 김문영
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.292-299
    • /
    • 1999
  • In order to investigate dynamic behaviors of marine cables under wave and earthquake forces a geometric nonlinear. F, E formulation of marine cables is presented and tangent stiffness and mass matrices for the isoparametric cable element are derived, The initial equilibrium state of cables subjected to self -weights and current forces is determined and free vibration and dynamic nonlinear analysis of cable structures under additional environmental loads are performed based on the initial configuration Challenging examples are presented and discussed in order to demonstrate the feasibility of the present finite element method and investigate dynamic nonlinear behaviors of marine cables.

  • PDF

Design and Analysis of a Dual-Stator Spoke-Type Linear Vernier Machine for Wave Energy Extraction

  • Khaliq, Salman;Kwon, Byung-il
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1700-1706
    • /
    • 2016
  • In this paper, a dual-stator, spoke-type linear vernier machine (DSSLVM) for wave energy extraction application was proposed. This machine is capable of producing a competitively high thrust force and force density at a low operation speed in direct drive systems. The operation principal and working of the proposed DSSLVM were studied. The stator core height is adjusted to improve the overall force density of the proposed machine while reducing the force ripple. To evaluate the advantages of the proposed DSSLVM, the main performance was compared with that of a recently developed linear primary permanent magnet vernier machine (LPPMVM). The proposed machine exhibited greater thrust force and force density, an improved power factor and lower force ripple with the same permanent magnet (PM) volume compared to the LPPMVM.

Analysis of Wave Forces Acting on Vertical Cylinder and Wave Transformations by S-Dimensional VOF Method (3차원 VOF법에 의한 주상구조물에 작용하는 파력과 파랑변형 해석)

  • Lee, Sang-Ki;Kim, Chang-Hoon;Kim, Do-Sam;Sin, Dong-Hoon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.377-381
    • /
    • 2006
  • Recently, as economy grow and population increase we need to develop our coastal area and make good use of it for various purposes. That's why large structures are being installed on the sea. Some samples are petroleum storage tanks, pier of sea bridges. These are large structures which have been installed at coastal area. When we design such vertical cylinder, we should avoid too much construction expense caused by excessive designing or by lack of sufficient design. In order to prevent excessive expenditure, it is important to correctly calculate the force of waves acting on structures and predict the wave transformation. In this study, apply to VOF method based on Navier-Stokes equation and then discussed that nonlinear wave force and wave transformation. A comparison between the numerical model and existing experimental results showed nice agreement among them.

  • PDF

Compare Seismic Coefficient Method and Seismic Response Analysis for Slope during Earthquake (지진시 사면안정해석에 있어서의 진도법과 지진응답해석의 결과 비교)

  • 박성진;오병현;박춘식;황성춘
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.193-200
    • /
    • 2000
  • Numerical analysis of slope stability is presented using slice method, static seismic analysis methods, and earthquake response analysis methods. Static seismic force is considered as 0.2g while vertical static seismic force is not considered in analysis. For earthquake response analysis, Hachinohe-wave is applied. Safety factor calculated using slice method for failure surface. Calculating methods are Bishop's method and Janhu's method. Static seismic analysis was applied using Mhor-Coulomb model and earthquake response analysis was applied using non-linear elastic model.

  • PDF

Spectral Fatigue Analysis for Topside Structure of Offshore Floating Vessel

  • Kim, Dae-Ho;Ahn, Jae-Woo;Park, Sung-Gun;Jun, Seock-Hee;Oh, Yeong-Tae
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.239-251
    • /
    • 2015
  • In this study, a spectral fatigue analysis was performed for the topside structure of an offshore floating vessel. The topside structure was idealized using beam elements in the SACS program. The fatigue analysis was carried out considering the wave and wind loads separately. For the wave-induced fatigue damage calculation, motion RAOs calculated from a direct wave load analysis and regular waves with different periods and unit wave heights were utilized. Then, the member end force transfer functions were generated covering all the loading conditions. Stress response transfer functions at each joint were produced using the specified SCFs and member end force transfer functions. fatigue damages were calculated using the obtained stress ranges, S-N curve, wave spectrum, heading probability of each loading condition, and their corresponding occurrences in the wave scatter diagrams. For the wind induced fatigue damage calculation, a dynamic wind spectral fatigue analysis was performed. First, a dynamic natural frequency analysis was performed to generate the structural dynamic characteristics, including the eigenvalues (natural frequencies), eigenvectors (mode shapes), and mass matrix. To adequately represent the dynamic characteristic of the structure, the number of modes was appropriately determined in the lateral direction. Second, a wind spectral fatigue analysis was performed using the mode shapes and mass data obtained from the previous results. In this analysis, the Weibull distribution of the wind speed occurrence, occurrence probability in each direction, damping coefficient, S-N curves, and SCF of each joint were defined and used. In particular, the wind fatigue damages were calculated under the assumption that the stress ranges followed a Rayleigh distribution. The total fatigue damages were calculated from the combination with wind and wave fatigue damages according to the DNV rule.

Interaction Effect between Caissons by Installation of New Caisson on Existing Caisson Breakwater in Second Order Stokes Wave Condition (비선형 규칙파 조건에서 기존 케이슨 방파제에 신규 케이슨 추가설치에 따른 케이슨들 간의 상호작용 영향 평가)

  • Park, Min Su
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.345-356
    • /
    • 2021
  • In order to increase the structural stability of existing caisson breakwater, the design and the construction is carried out by installation of new caissons on the back or the front of old caissons. In this study, we use the ANSYS AQWA program to analyze the wave forces acting on individual caisson according to effects of wave structure interaction when new caissons are additionally installed on existing caisson breakwater. Firstly, the wave force characteristics acting on the individual caisson were analyzed for each period (frequency) in the frequency domain. In time domain analysis, the dynamic wave force characteristics were strongly influenced by the distance between caissons on the frequency at which the unusual distribution of wave forces occurs.