• Title/Summary/Keyword: Wave field measurement

Search Result 293, Processing Time 0.032 seconds

Drivability Monitoring of Large Diameter Underwater Steel Pipe Pile Using Pile Driving Analyzer. (수중 대구경강관말뚝의 항타관입성 모니터링을 위한 PDA 적용 사례)

  • Kim, Dae-Hak;Park, Min-Chul;Kang, Hyung-Sun;Lee, Won-Je
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.11-19
    • /
    • 2004
  • When pile foundation constructed by driving method, it is desirable to perform monitoring and estimation of pile drivability and bearing capacity using some suitable tools. Dynamic Pile Monitoring yields information regarding the hammer, driving system, and pile and soil behaviour that can be used to confirm the assumptions of wave equation analysis. Dynamic Pile Monitoring is performed with the Pile Driving Analyser. The Pile Driving Analyser (PDA) uses wave propagation theory to compute numerous variables that fully describe the condition of the hammer-pile-soil system in real time, following each hammer impact. This approach allows immediate field verification of hammer performance, driving efficiency, and an estimate of pile capacity. The PDA has been used widely as a most effective control method of pile installations. A set of PDA test was performed at the site of Donghea-1 Gas Platform Jacket which is located east of Ulsan. The drilling core sediments of location of jacket subsoil are composed of mud and sand, silt. In this case study, the results of PDA test which was applied to measurement and estimation of large diameter open ended steel pipe pile driven by underwater hydraulic hammer, MHU-800S, at the marine sediments were summarized.

  • PDF

Numerical Analysis for Conductance Probes, for the Measurement of Liquid Film Thickness in Two-Phase Flow

  • No, Hee-Cheon;F. Mayinger
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.450-455
    • /
    • 1995
  • A three-dimensional numerical tool is developed to calculate the potential distribution, electric field, and conductance for any types of conductance probes immersed in the wavy liquid film with various shapes of its free surface. The tool is validated against various analytical solutions. It is applied to find out the characteristics of the wire-wire probe, the flush-wire probe and the flush-flush probe in terms of resolution, linearity, and sensitivity. The wire-wire probe shows high resolution and excellent linearity for various film thickness, but comparably low sensitivity for low film thickness fixed. The flush-wire probe shows good linearity and high sensitivity for varying film thickness, but resolution degrading with an increase in film thickness. In order to check the applicability of the three types of probes in the real situation, the Korteweg-de Vries(KdV) two-dimensional solitary wave is simulated. The wire-wire probe is strongly affected by the installation direction of the two wires; when the wires are installed perpendicularly to the flow direction, the wire-wire probe shows large distortion of the solitary wave. In order to measure the transverse profile of waves, the wire-wire probes and the flush-wire probes are required to be separately installed 2mm and 2mm, respectively.

  • PDF

Drivability of Offshore Pile Foundation at Ieodo Ocean Research Station (이어도 해양과학기지 말뚝기초의 항타 관입성 연구)

  • Shim, Jae-Seol;Yoon, Gil-Lim;Lee, Seung-Jun
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.373-384
    • /
    • 2003
  • When pile foundation is constructed by dynamic method, it is desirable to perform monitoring of drivability with pile penetration. Dynamic pile monitoring yields information regarding driving hammer, cushion, pile and soil behaviour that can be used to confirm the assumptions of wave equation analysis. In this study, dynamic monitoring of the steel pipe pile was performed with Pile Driving Analyser (PDA). The PDA utilizes the wave propagation theory to compute numerous variables which describe the conditions of the hammer-pile-soil system in real-time and following each hammer impact. This approach allows immediate field verification of hammer performance, driving efficiency, and estimation of pile bearing capacity. A series of PDA test were performed at the Ieodo Ocean Research Station (IORS) located in southeast of Marado, a southernmost small island south of Jeju Island. The drilling core sediments of Ieodo subsoil are composed of mud and sand, showing lamination and wavy or lenticular bedding, which were often bioturbated. This paper summarizes the results of PDA tests which were applied in measurement and estimation of large diameter open ended steel pipe pile driven by steam hammer, Vulcan-560 and MRBS-4600, at the marine sediments.

Cut-off Probe Frequency Spectrum의 물리적 해석

  • Yu, Sin-Jae;Kim, Dae-Ung;Kim, Jeong-Hyeong;Seong, Dae-Jin;Sin, Yong-Hyeon;Na, Byeong-Geun;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.200-200
    • /
    • 2011
  • Although the cut-off probe, a precise measurement method for the electron density, is widely used in the industry, the physics on the wave spectrum of the cut-off is not understood yet, only cut-off point frequency containing the information of electron density has been analyzed well. This paper analyzes the microwave frequency spectrum of the cut-off probe to see the physics behind using both microwave field simulation (CST Microwave Studio) and simplified circuit simulation. The result shows that the circuit model well reproduces the cut-off wave spectrum especially in the low frequency regime where the wavelength of the driving frequency is larger than the characteristic length and reveals the physics of transmission characteristics with frequency as resonances between vacuum, plasma and sheath. Furthermore, by controlling the time domain in solver of the microwave simulator, the cut-off like transmission peaks above the cut-off frequency which has been believed as cavity effect is verified as chamber geometry effect. The result of this paper can be used as the basis for the improvement of cut-off probe.

  • PDF

X-band CW Doppler Radar Development for Measurement of Muzzle Velocity (포구 속도 측정을 위한 X-band CW 도플러 레이더 개발)

  • Kim, Jae-Heon;Koh, Yeong-Mok;NamGung, Sung-Won;Jang, Yong-Sik;Park, Yong-Seok;Ra, Keuk-Hwan;Choi, Ik-Kwon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.460-470
    • /
    • 2009
  • In this paper, we described the implementation of the X-Band continuous-wave doppler radar for muzzle velocity measurement. The radar is consisted of microwave transceiver, signal processor, power board, and the measuring program was developed for the operating and field test. The operating frequency of doppler radar is able to set ${\pm}3\;MHz$ with 5 channel from the center frequency, and the output power is 25 dBm. The minimum receiving power is -117 dBm. The radar would obtain the doppler frequency from the artillery, and calculate accurate velocity point and then estimate muzzle velocity. The performance test for this radar was done with 155 mm at barrel and tripod mounted, and also compared the performance with the reference radar. As a result, the performance of the our new radar is equal with the reference one.

Analysis of QRS-wave Using Wavelet Transform of Electrocardiogram (웨이블릿 변환을 이용한 심전도의 QRS파 신호 분석)

  • Choi, Chang-Hyun;Kim, Yong-Joo;Kim, Tae-Hyeong;Ahn, Yong-Hee;Shin, Dong-Ryeol
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.317-325
    • /
    • 2008
  • The electrocardiogram (ECG) measurement system consists of I/O interface to input the ECG signals from two electrodes, FPGA (Field programmable gate arrays) module to process the signal conditioning, and real time module to control the system. The algorithms based on wavelet transform were developed to remove the noise of the ECG signals and to determine the QRS-waves. Triangular wave tests were conducted to determine the optimal factors of the wavelet filter by analyzing the SNRs (signal to noise ratios) and RMSEs (root mean square errors). The hybrid rule, soft method, and symlets of order 5 were selected as thresholding rule, thresholding method, and mother wavelet, respectively. The developed wavelet filter showed good performance to remove the noise of the triangular waves with 10.98 dB of SNR and 0.140 mV of RMSE. The ECG signals from a total of 6 subjects were measured at different measuring postures such as lying, sitting, and standing. The durations of QRS-waves, the amplitudes of R-waves, the intervals of RR-waves were analyzed by using the finite impulse response (FIR) filter and the developed wavelet filter. The wavelet filter showed good performance to determine the features of QRS-waves, but the FIR filter had some problems to detect the peaks of Q and S waves. The measuring postures affected accuracy and precision of the ECG signals. The noises of the ECG signals were increased due to the movement of the subject during measurement. The results showed that the wavelet filter was a useful tool to remove the noise of the ECG signals and to determine the features of the QRS-waves.

Implementation of Bender Element to In-situ Measurement of Stiffness of Soft Clays (연약지반의 강성 측정을 위한 벤더 엘리먼트의 현장 적용성 연구)

  • Mok, Young-Jin;Jung, Jae-Woo;Han, Man-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.37-45
    • /
    • 2006
  • Bender elements, composed of thin piezo-ceramics and elastic shims, have been used to measure shear wave velocities of specimens in laboratories. In a preliminary stage of their field applications, an in-house research of optimizing suitable bender elements and their geometrical arrangement has been carried out in a barrel of kaolinite-water mixture. Two types of measurement configuration, similar to cross-hole and in-hole seismic testing, have been implemented. prototype instrumented rods were penetrated into a soft clay layer in the west coast and excellent shear waves were recorded. Development of penetration device (mandrel) and associated instrumented rods are in progress for deeper investigation.

A Pilot Study of Implementing Bender Element to In-situ Civil Engineering Measurement (현장 토목 계측을 위한 벤더 엘리멘트의 적용성 연구)

  • Jung Jae-Woo;Jang In-Sung;Mok Young-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.215-223
    • /
    • 2005
  • Piezo-ceramics are special materials which transform energy from mechanical to electrical forms and vice versa. Bender elements are composite materials consisting of thin piezo-ceramics and elastic shims, and are widely used as actuators and transducers in the field of electronics, robotics, autos and mechatronics utilizing the effectiveness of energy transformation capability. In geotechnical engineering, commercial bender elements are used in laboratory as source and receiver in the measurements of soil stiffness. The elements were built by using various metal shims sandwiched between piezo-ceramics and coating over the composite in the research. A pair of elements were buried in a concrete block and used as source and receiver to measure the stiffness of the concrete. The test results were verified by comparing with the resonant column testing results. In a preliminary stage of the development of an in-situ seismic testing equipment using bender elements for soft clay materials, shear waves were generated and measured by burying the elements in the barrel of kaolinite and water mixture. The measured shear wave signals were so distinct for the first-arrival pick that applicability of the elements in the field measurements could be very promising.

Characteristic Verification of Electronically Scanned Array Antenna for a Ku-band FMCW Radar (Ku-대역 FMCW 레이더용 전자식 빔 조향 배열 안테나 특성 검증)

  • Chae-Hyun Jung;Jaemin Lee;Minchul Kim;Hang-Soo Lee;Sungjun Yoo;Sunghoon Jang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.65-71
    • /
    • 2023
  • In this paper, the design, fabrication and verification steps of an electronically scanned array antenna(AESA) for a photonics-based Ku-band FMCW radar system is described. The presented system consists of a transmitter and a receiver respectively, which has a same antenna in the transceiver. The designed antenna has 2×8 array configuration and operates at Ku-band. The VSWR(Voltage Standing Wave Ratio) of each 16-radiators and the coupling power between radiators is measured. Also, in order to minimize the radar system damage because of handover power from the transmitter antenna to the receiver antenna when the transmitter works, the isolation between the transmitter antenna and the receiver antenna is optimized by test. As a result, beamwidth, side lobe level and beam steering characteristic are obtained by synthesizing each radiator pattern measurement data after each beam pattern of 16-radiators is measured in the near-field chamber.

Measurement of GPR Direct Wave Velocity by f-k Analysis and Determination of Dielectric Property by Dispersive Guided Wave (f-k 분석에 의한 레이다파 속도 측정 및 레이다파의 분산성 가이드 현상을 이용한 지하 물성 계산)

  • Yi, Myeong-Jong;Endres, Anthony L.;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.304-315
    • /
    • 2006
  • We have examined the applicability of f-k analysis to the GPR direct wave measurement for water content to characterize vadose zone condition. When the vadose zone consists of a dry surface layer over wet substratum, we obtained f-k spectra where most of the energy is bounded by the air and dry soil velocities. In this case, dry soil velocity was successfully estimated by using high frequency data. On the other hands, when wet soil overlies dry substratum, the f-k spectra show a contrasting response where most of the energy travels with the velocity bounded by dry and wet soil velocities. In this case, the radar waves are trapped and guided within wet soil layer, exhibiting velocity dispersion. By adopting modal propagation theory, we could formulae a simple inversion code to find two layer's dielectric constants as well as layer thickness. By inverting the velocity dispersion curve obtained from f-k spectra of synthetic modeling data, we could obtain good estimates of dielectric constants of each layer as well as first layer thickness. Moreover, we could obtain more accurate results by including the higher mode data. We expect this method will be useful to get the quantitative property of real subsurface when the field condition is similar.