• Title/Summary/Keyword: Wave field

Search Result 2,515, Processing Time 0.028 seconds

Wave Interpretation of Forced Vibration of Finite Cylindrical Shells (탄성파를 이용한 유한 원통셸의 강제진동 해석)

  • 길현권
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.83-89
    • /
    • 1999
  • The forced vibration of a finite cylindrical shell has been analyzed from an elastic wave viewpoint. The displacement vector is used to formulate the vibration field, that is regarded as a superposition of disturbances due to elastic waves propagating on the shell. The reflection matrix is also used in the formulation of the vibration field, that is easily derived in the present approach. It allows one to easily identify the wave conversion of elastic waves at the ends of the shell. The present approach is used to predict the vibration field of the cylindrical shell with free-free boundary conditions. The contribution of each type of elastic waves into the vibration field was identified, and the wave conversion at the ends of the shell was observed. Those results showed that the present approach can be effectively used to analyze the forced vibration of the cylindrical shell from an elastic wave viewpoint.

  • PDF

Field measurements of natural periods of vibration and structural damping of wind-excited tall residential buildings

  • Campbell, S.;Kwok, K.C.S.;Hitchcock, P.A.;Tse, K.T.;Leung, H.Y.
    • Wind and Structures
    • /
    • v.10 no.5
    • /
    • pp.401-420
    • /
    • 2007
  • Field measurements of the wind-induced response of two residential reinforced concrete buildings, among the tallest in the world, have been performed during two typhoons. Natural periods and damping values have been determined and compared with other field measurements and empirical predictors. Suitable and common empirical predictors of natural period and structural damping have been obtained that describe the trend of tall, reinforced concrete buildings whose structural vibrations have been measured in the collection of studies in Hong Kong compiled by the authors. This data is especially important as the amount of information known about the dynamic parameters of buildings of these heights is limited. Effects of the variation of the natural period and damping values on the alongwind response of a tall building for serviceability-level wind conditions have been profiled using the gust response factor approach. When using this approach on these two buildings, the often overestimated natural periods and structural damping values suggested by empirical predictors tended to offset each other. Gust response factors calculated using the natural periods and structural damping values measured in the field were smaller than if calculated using design-stage values.

Development of Wave Height Field Measurement System Using a Depth Camera (깊이카메라를 이용한 파고장 계측 시스템의 구축)

  • Kim, Hoyong;Jeon, Chanil;Seo, Jeonghwa
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.382-390
    • /
    • 2021
  • The present study suggests the application of a depth camera for wave height field measurement, focusing on the calibration procedure and test setup. Azure Kinect system is used to measure the water surface elevation, with a field of view of 800 mm × 800 mm and repetition rate of 30 Hz. In the optimal optical setup, the spatial resolution of the field of view is 288 × 320 pixels. To detect the water surface by the depth camera, tracer particles that float on the water and reflects infrared is added. The calibration consists of wave height scaling and correction of the barrel distortion. A polynomial regression model of image correction is established using machine learning. The measurement results by the depth camera are compared with capacitance type wave height gauge measurement, to show good agreement.

Corrosion visualization under organic coating using laser ultrasonic propagation imaging

  • Shi, Anseob;Park, Jinhwan;Lee, Heesoo;Choi, Yunshil;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.301-309
    • /
    • 2022
  • Protective coatings are most widely used anticorrosive structures for steel structures. The corrosion under the coating damages the host material, but this damage is completely hidden. Therefore, a field-applicable under-coating-corrosion visualization method has been desired for a long time. Laser ultrasonic technology has been studied in various fields as an in situ nondestructive inspection method. In this study, a comparative analysis was carried out between a guided-wave ultrasonic propagation imager (UPI) and pulse-echo UPI, which have the potential to be used in the field of under-coating-corrosion management. Both guided-wave UPI and pulse-echo UPI were able to successfully visualize the corrosion. Regarding the field application, the guided-wave UPI performing Q-switch laser scanning and piezoelectric sensing by magnetic attachment exhibited advantages owing to the larger distance and incident angle in the laser measurement than those of the pulse-echo UPI. Regarding the corrosion visualization methods, the combination of adjacent wave subtraction and variable time window amplitude mapping (VTWAM) provided acceptable results for the guided-wave UPI, while VTWAM was sufficient for the pule-echo UPI. In addition, the capability of multiple sensing in a single channel of the guided-wave UPI could improve the field applicability as well as the relatively smaller size of the system. Thus, we propose a guided-wave UPI as a tool for under-coating-corrosion management.

Service Application Implementation using WAVE/DSRC Development Platform (WAVE/DSRC 개발 플랫폼을 이용한 서비스 어플리케이션 구현)

  • Kim, Jae-wan;Kim, Jin-woo;Kim, Seung-ku
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1030-1036
    • /
    • 2020
  • The DSRC method currently in use has a limitation in providing various ITS services by short-distance wireless communication. Therefore, the WAVE/DSRC hybrid wireless platform, which was developed by applying WAVE technology in-house, improved the data transmission speed and greatly expanded the transmission range. The summary H/W and S/W technologies are summarized in the text. In this paper, various services such as BSM, SPAT, MAP, and road video information related to ITS services have been implemented, and various tests are conducted based on scenarios considering the environment in the actual field by utilizing the previously developed WAVE/DSRC composite wireless platform. Through this emulation process in the real field, we were able to verify the excellence of the WAVE/DSRC composite wireless platform once again and predict the usefulness and potential of development services in real field operations.

A compensation method for the scaling effects in the simulation of a downburst-generated wind-wave field

  • Haiwei Xu;Tong Zheng;Yong Chen;Wenjuan Lou;Guohui Shen
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.261-275
    • /
    • 2024
  • Before performing an experimental study on the downburst-generated wave, it is necessary to examine the scale effects and corresponding corrections or compensations. Analysis of similarity is conducted to conclude the non-dimensional force ratios that account for the dynamic similarity in the interaction of downburst with wave between the prototype and the scale model, along with the corresponding scale factors. The fractional volume of fluid (VOF) method in association with the impinging jet model is employed to explore the characteristics of the downburst-generated wave numerically, and the validity of the proposed scaling method is verified. The study shows that the location of the maximum radial wind velocity in a downburst-wave field is a little higher than that identified in a downburst over the land, which might be attributed to the presence of the wave which changes the roughness of the underlying surface of the downburst. The impinging airflow would generate a concavity in the free surface of the water around the stagnation point of the downburst, with a diameter of about two times the jet diameter (Djet). The maximum wave height appears at the location of 1.5Djet from the stagnation point. Reynolds number has an insignificant influence on the scale effects, in accordance with the numerical investigation of the 30 scale models with the Reynolds number varying from 3.85 × 104 to 7.30 × 109. The ratio of the inertial force of air to the gravitational force of water, which is denoted by G, is found to be the most significant factor that would affect the interaction of downburst with wave. For the correction or compensation of the scale effects, fitting curves for the measures of the downburst-wave field (e.g., wind profile, significant wave height), along with the corresponding equations, are presented as a function of the parameter G.

A Study on the Development of Wind and Wave Model of Typhoon

  • Jin Guo-Zhu;Song Chae-Uk;Seol Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.28 no.9
    • /
    • pp.815-820
    • /
    • 2004
  • In this paper, after analyzing other models with their advantages and disadvantages, we proposed a simple parametric model for calculating wind speed & direction and wave height & direction at any location around the typhoon at sea. The proposed wind-field model of typhoon is asymmetric, and consists of a circular symmetric wind-field caused by the pressure gradient of stationary typhoon and a moving wind-field caused by the movement of typhoon. By verifying this model through observed data, we found that it is accurate enough to develop the simulation software for training students and seafarers so as to take appropriate actions while being faced with the typhoon at sea.

A Cavity-Assisted Atom Detector (CAAD) (캐비티-유도된 원자측정 장치)

  • Chough, Young-Tak;Hyuncheol Nha;Kyungwon An
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.124-125
    • /
    • 2000
  • We introduce a scheme with a maximized efficiency of detecting atoms passing through an optical standing-wave mode cavity. Consider a standing-wave optical cavity illuminated by a weak probe beam through one of its mirrors where the transmission through the other mirror is monitored by a photodetector. If an atom is put in the cavity, the atom-cavity coupling shifts the resonance frequency of the system via the so-called normal mode splitting, and thereby the transmission power will drop. In fact, this type of atom detection scheme has been used in recent single atom trap experiments In practice, however, the field in a standing-wave mode will have a geometrical structure having nodes and antinodes that when the atom traverses the cavity through one of the nodes, there will be no such effect of atom-field interaction. (omitted)

  • PDF

Velocity Change of Magneto Surface Acoustic Wave (MSAW) in (Fe1-xCox)89Zr11 Amorphous Films (II) ((Fe1-xCox)89Zr11 비정질 자성막에서의 자기표면탄성파 속도변화(II))

  • Kim, Sang-Won
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.279-282
    • /
    • 2002
  • The effect of field annealing on the velocity changes of magneto surface acoustic wave (MSAW) devices has been investigated for deposited $(Fe_{1-x}Co_x)_{89}Zr_{11}$ (x = 0~1.0) amorphous films. By means of two step field annealing at $195^{\circ}C$ for 10 minute in the magnetic field of 130 Oe, the MSAW device with x=0.4 film among the devices showed the superior velocity change of 0.1 %. This gigantic value was obtained in the DC bias field of 40 Oe at the exciting frequency of 8.7 MHz. It was confirmed that such behavior was due to the variation of differential permeability caused by an optimal stress within the magnetic film.

Design and Near-Field Analysis of X-Band Linear/Circular Polarizer (X-밴드 선형/원형 편파 변환기의 설계 및 근거리장 해석)

  • 서창용;정명수;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.8
    • /
    • pp.801-808
    • /
    • 2004
  • In this paper, we proposed the grating parallel plate waveguide structure for converting a linearly polarized wave to a circularly polarized wave. For the design of the polarizer, the moment method and Floquet's theorem are applied under two assumptions that the incident wave is a plane wave and the structure is infinitely periodic. In order for the more precise design, we performed the near-field analysis for the finite polarizer structure using MATLAB. By comparing with the measured results obtained by the near-field arrangement, we verified the correctness of our near-field analysis. By taking the ideal assumptions considered in the initial design procedure into account, newly designed modified dimensions for the polarizer was suggested which give improved performance.