• Title/Summary/Keyword: Wave elevation

Search Result 239, Processing Time 0.023 seconds

Numerical Prediction of Chamber Performance for OWC Wave Energy Converter (OWC 파력발전장치의 공기실 성능예측에 대한 수치적인 연구)

  • Jin, Ji-Yuan;Hyun, Beom-Soo;Liu, Zhen;Hong, Key-Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.2
    • /
    • pp.91-98
    • /
    • 2010
  • The water elevation inside the air chamber and bi-directional air flow in the duct of Oscillating Water Column wave energy converter is one of the most important factors to evaluate the operating performance. The numerical wave tank based on the commercial software Fluent 6.2 in the present paper is employed to generate the incident waves. The numerical wave tank consists of the continuity equations, the Reynolds-averaged Navier-Stokes equations and the two-phase VOF function. The oscillating amplitude of water column in the chamber and bi-directional air flow in the duct installed on the top of the chamber are calculated, and compared with experimental data to verify the validation of the present NWT. The nozzle effects of the chamber-duct system on the relative amplitudes of the inner free water surface and air flow rate in the duct are investigated.

Wave Field Analysis around Permeable Rubble-Mound Breakwaters (투과 사석방파제 주변의 파랑장 해석)

  • 곽문수;이기상;편종근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.2
    • /
    • pp.116-126
    • /
    • 2003
  • In this study, a method that leads to make a simple decision on important parameters in analysis of wave field in permeable rubble-mound, block-mound breakwater, such as penetration velocity of incident waves and resistance coefficient, is introduced. A model that could analyze wave field of permeable breakwater in harbor, by applying these methods and arbitrary transmission coefficient boundary condition to a time-dependent mild-slope equation, was introduced. The verification of the model was done by carrying out 2-D physical model test on permeable breakwater, measuring the change in water surface elevation, comparing the computation result with time series, and comparing the result gained from the 3-D physical model test on permeable block-mound breakwater in an field harbor with the computation result in terms of regional wave height ratio in a harbor.

Design and Fabrication of a 2-Axis Waveguide Rotary Joint for a Millimeter-wave (Ka-Band) Multi-Mode Seeker with Low VSWR and Insertion Loss (낮은 정재파비와 삽입손실을 갖는 밀리미터파(Ka 밴드) 복합모드 탐색기용 2-축 도파관 로터리 조인트 설계 및 제작)

  • Song, Sung-Chan;Yoo, Sung-Ryong;Lim, Ju-Hyun;Jung, Yong-In
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.173-176
    • /
    • 2019
  • In this study, a Ka-band waveguide rotary joint that can be applied to a millimeter-wave seeker is designed and fabricated. The proposed rotary joint maintains a low standing-wave ratio and low-loss characteristics, and has two rotary axes designed to enable azimuth and elevation rotation. The rotary joint is designed as a ridge-waveguide-type mode converter and a ${\lambda}/4$ choke structure to match the electromagnetic wave propagation mode between the spherical and circular waveguides. A performance test using a network analyzer and a high-power transmitter to assess vibration and shock were conducted. Results showed that the rotary joint had a very low standing-wave ratio of less than the maximum of 1.19:1 and an insertion loss of less than 0.80 dB at $F_C{\pm}500MHz$.

Correlation Analysis between Wave Parameters using Wave Data Observed in HeMOSU-1&2 (HeMOSU-1&2의 파랑 관측 자료를 이용한 파랑 변수 간 상관관계 분석)

  • Lee, Uk-Jae;Ko, Dong-Hui;Cho, Hong-Yeon;Oh, Nam-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.4
    • /
    • pp.139-147
    • /
    • 2021
  • In this study, waves were defined using the water surface elevation data observed from the HeMOSU-1 and 2 marine meteorological observation towers installed on the west coast of Korea, and correlation analysis was performed between wave parameters. The wave height and wave period were determined using the wave-train analysis method and the wave spectrum analysis method, and the relationship between the wave parameters was calculated and compared with the previous study. In the relation between representative wave heights, most of the correlation coefficients between waves showed a difference of less than 0.1% in error rate compared to the previous study, and the maximum wave height showed a difference of up to 29%. In addition, as a result of the correlation analysis between the wave periods, the peak period was estimated to be abnormally large at rates of 2.5% and 1.3% in HeMOSU-1&2, respectively, due to the effect of the bimodal spectrum that occurs when the spectral energy density is small.

Studies on the Millimeter-wave Passive Imaging Sensor (밀리미터파 수동 이미징 센서 연구)

  • Jung, Kyung-Kwon;Chae, Yeon-Sik;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • In this paper, we have designed a millimeter-wave passive imaging sensor that is able to use remote sensing and security applications. The brightness temperature distribution of a scene is measured with a antenna at an angular resolution of $3^{\circ}$. The sensor is controlled by a PC, achieving a fast performance by using a pan/tilter. The pan/tilter should be able to scan a 2-D image of the scene, with a linear raster scan pattern. The mechanical scans in azimuth and elevation whereby an image of $20{\times}20$ pixels is acquired within less than 400s. Raw images are immediately displayed and stored for postprocessing.

Sea Surface statistical Properties as Measured by Laser Beam Reflections

  • Lee, Kwi-Joo;Park, Young-Sik;Voliak, K.I.
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.4 no.1
    • /
    • pp.10-21
    • /
    • 2001
  • A new method of laser remote sensing is proposed, based on sensing the sea surface by a narrow laser beam (2-3cm) and analyzing statistically specular reflections. Construction of the angular dependency of the average density of specks versus the aircraft flight horizontal azimuth allows calculation of both intensity and azimuthal properties of the sea surface spectrum. The paper contains the experimental setup and technique, the field measurement data taken onboard an aircraft and the examples of calculated main statistical parameters of sea waves. Their energy-carrying component velocity is found by the mean velocity of an ensemble of specular points at the random sea surface. The surface wave nonlinearity is shown to affect substantially the statistical characteristics measured: mean numbers of specular areas with th given elevation and given slope, arranged along the line of crossing the sea surface by the scanning laser beam. Experimental measurement of a variance in the number of these areas yields a principal possibility to calculate the correlation function of the sea surface without its preliminary modeling.

  • PDF

SIMULATION OF RELATIVE MOTION OF FLOATING BODIES INCLUDING EFFECTS OF A FENDER AND A HAWSER (방현재와 계류삭 효과를 고려한 부유체의 상대운동 모사)

  • Shin, Sangmook
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • A developed code is applied to simulate relative motion of floating bodies in a side-by-side arrangement, including effects of a fender and a hawser. The developed code is based on the flux-difference splitting scheme for immiscible incompressible fluids and the hybrid Cartesian/immersed boundary method. To validate the developed code for free surface flows around deforming boundaries, the water wave generation is simulated, which is caused by bed movement. The computed wave profile and time histories of wave elevation are compared with other experimental and computational results. The effects of a fender and a hawser are modeled by asymmetric force acting on the floating bodies according to a relative displacement with the bounds, in which the fender and the hawser exert no force on the bodies. It has been observed that the floating body can be accelerated by a gap flow due to a phase difference caused by the free surface. Grid independency is established for the computed time history of the body velocity, based on three different size grids.

Simulation of Nonlinear Water Waves using Boundary Element Method (경계요소법을 이용한 비선형파의 재현)

  • 오영민;이길성;전인식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.3
    • /
    • pp.204-211
    • /
    • 1993
  • Boundary element method is applied to simulate nonlinear water waves using Green's identity formula in a numerical wave flume. A system of linear equations is formulated from the governing equation and free surface boundary conditions in order to calculate velocity potential and water surface elevation at each nodal point. The velocity square terms are included in the dynamic free surface boundary condition. The free surface is treated as a moving boundary. the vertical variation of velocity potential being considered in calculating the time derivative of the velocity potential at the free surface. The present method is applied to simulate solitary wave and Stokes 2nd order wave, and shows excellent agreements with their theoretical values.

  • PDF

Numerical Prediction of Ship Hydrodynamic Performances using Explicit Algebraic Reynolds Stress Turbulence Model (선박의 저항성능 추정을 위한 EARSM 난류 모형의 활용)

  • Kim, Yoo-Chul;Kim, Kwang-Soo;Kim, Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.67-77
    • /
    • 2014
  • In this study, Explicit Algebraic Reynolds Stress Model (EARSM) which is based on the existing ${\kappa}-{\omega}$ model has been applied to the flow field analysis around ship hulls. Existing transport equations for the turbulent kinetic energy and the dissipation rate are used in almost the same form and anisotropy terms of Reynolds stresses are newly considered. The well-known KVLCC2 and KCS hull forms are selected as validation cases, which were also used in 2010 Workshop on CFD in Ship Hydrodynamics. In case of KVLCC2 double model, comparison of mean velocity distribution, turbulent kinetic energy, and Reynolds stresses near the propeller plane has been carried out and wave elevation and wave profiles have been additionally studied for KCS and KVLCC2 with free surface models. Some improved results for mean velocity distribution at the propeller plane have been obtained while there is little change in free surface wave profiles.

Performance of Oscillating Water Column type Wave Energy Converter in Oblique Waves (사파중 진동수주형 파력발전장치의 성능평가)

  • Jin, Jiyuan;Hyun, Beom-Soo;Hong, Keyyong;Liu, Zhen
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.182-188
    • /
    • 2014
  • In an oscillating water column (OWC)-type wave energy conversion system, the performance of the OWC chamber depends on the chamber shape, as well as the incident wave direction and pressure drop produced by the turbine. Although the previous studies on OWC chambers have focused on wave absorbing performance in ideal operating conditions, incident waves do not always arrive normally to the OWC chamber in real sea conditions, especially in fixed devices. The present study deals with experiments and numerical calculations to investigate the effects of wave direction on the performance of the OWC chamber. The experiments were carried out in a three-dimensional wave basin for five different wave directions, including the effect of turbine using the corresponding orifice. The wave elevation inside the chamber was measured at the center point under various incident wave conditions. The numerical study was conducted by using a numerical wave tank-based volume-of-fluid model to compare the results with experimental data and to reveal the detailed flows around the chamber.