• Title/Summary/Keyword: Wave Transformation

Search Result 348, Processing Time 0.029 seconds

Development of Ultrasonic Sensors for Simultaneous Measurement of Longitudinal and Shear Waves (종-횡파 동시 측정용 초음파 센서의 개발)

  • Kim, Yeon-Bo;Rho, Yong-Rae
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • A study has been made on the fabrication of a dual mode(a longitudinal and shear mode) ultrasonic sensor using a single PZT piezoelectric ceramic element. We investigated the mechanism of the dual mode sensor that generated both of the longitudinal and the shear waves simultaneously with the single PZT element. Through the analysis of analytic wave propagation equations, all the possible crystal cuts have been examined to determine appropriate Euler transformation angles for efficient excitations of the dual modes. We studied the performance of a PZT element as a function of its rotation angle so that its efficiency is optimized to excite the two waves of equal strength. Experimental examination of the waveform on a delay line(STS303) setup confirms that the ultrasonic sensor can transmit and detect both longitudinal and shear waves simultaneously.

  • PDF

Microstructure and Hardness of Surface Melting Hardened Zone of Mold Steel, SM45C using Yb:YAG Disk Laser

  • Lee, Kwang-Hyeon;Choi, Seong-Won;Yoon, Tae-Jin;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.75-81
    • /
    • 2016
  • This study applied laser surface melting process using CW(Continuous wave) Yb:YAG laser and cold-work die steel SM45C and investigated microstructure and hardness. Laser beam speed, power and beam interval are fixed at 70 mm/sec, 2.8 kW and $800{\mu}m$ respectively. Depth of Hardening layer(Melting zone) was a minimum of 0.8 mm and a maximum of 1.0 mm that exceeds the limit of minimum depth 0.5 mm applying trimming die. In all weld zone, macrostructure was dendrite structure. At the dendrite boundary, Mn, Al, S and O was segregated and MnS and Al oxide existed. However, this inclusion didn't observe in the heat-affected zone (HAZ). As a result of interpreting phase transformation of binary diagram, MnS crystallizes from liquid. Also, it estimated that Al oxide forms by reacting with oxygen in the atmosphere. The hardness of the melting zone was from 650 Hv to 660 Hv regardless of the location that higher 60 Hv than the hardness of the HAZ that had maximum 600 Hv. In comparison with the size of microstructure using electron backscatter diffraction(EBSD), the size of microstructure in the melting zone was smaller than HAZ. Because it estimated that cooling rate of laser surface melting process is faster than water quenching.

Generation Method of the Rectangular Grid Information for Finite Difference Model (유한차분모형을 위한 직사각형 격자정보 생성기법)

  • 정신택;조범준;김정대
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.3
    • /
    • pp.190-195
    • /
    • 2003
  • For many coastal problems, such as wave transformation, tidal circulation, sediment transports and diffusion phenomena, we resort to numerical techniques. The representative numerical techniques are the method of finite differences and finite elements. The approximate algebraic equations, referred to as finite difference equations(FDEs), are subsequently solved at discrete grid points within the domain of interests. Therefore, a set of grid points within the domain, as well as the boundaries of the domain, must be specified. The generation of grids for FDEs, with uniform spacing, is very simple compared to that of finite elements. However, within a very complex domain, there are few grid generation tools we can use conveniently. Unfortunately, most of the commercial grid generation programs are developed only for finite element method. In this paper, grid generation method using digitizer, with uniform rectangular spacing, are introduced in detail. Didger and Surfer programs by Golden Software are necessary to produce comparatively accurate and simple depth data.

Design of Matching Layers for high Efficiency-wide band Ultrasonic Transducers (고출력 광대역 초음파 탐촉자를 위한 정합층 설계)

  • Kim, Yeon-Bo;Roh, Yong-Ae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.82-89
    • /
    • 1996
  • Application fields of ultrasonic transducers can be divided into two categories, a high ultrasonic resolution required field and a high ultrasonic power required field. This paper is aimed to determine the optimal properties of the matching layers of the transducer for each of the applications. Further, it is aimed to optimize the properties of the matching layers that show satisfactory performances for both of the application fields. Through the direct time domain analysis of the transmission and reflection behavior of the ultrasonic wave, apart from the conventional equivalent circuit analysis, and Fourier transformation of its results, we found the optimum acoustic impedances of the matching layers. The newly determined layers provide much better transducer performance-57% at most-than those obtained with conventional design methods. Based on the results, we also found the optimal acoustic impedances of the layers good for both of the application fields. For te optimization, we developed a new transducer performance evaluation parameter that can be applied to any type of ultrasonic transducers.

  • PDF

Folded Ultra Wideband Monopole Antenna for SDR Application (Software Defined Radio (SDR) 무전기용 접힌 평면 구조의 초광대역 안테나)

  • Oh, Jun-Hwa;Oh, Il-Young;Yook, Jong-Gwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.52-58
    • /
    • 2009
  • We propose a folded monopole antenna with loads, and analyze the roles of design parameters which affect the return loss of the proposed antenna. VSWR < 3 bandwidth of the antenna is 30 ~ 2000 MHz, ranging from the HF/VHF/UHF bands. For operating travelling antenna, we connect six loads at the end of the antenna. The reflected wave is drastically reduced due to the six loads. For improved return loss properties, we use Klopfenstein tape that determine positions and values of six loads. The propose antenna has omni-directional radiational patterns like that of conventional monopole antennas. For wideband impedance transformation, we use the balun which operating frequency region is 10 ~ 1900 MHz. We expect the proposed antenna has important role for the wideband and multi-rold multi-functional communication systems.

Analysis of Acoustic Propagation using Spectral Parabolic Equation Method (스펙트럴 포물선 방정식 법을 이용한 수중음파 전달해석)

  • Kim, Kook-Hyun;Seong, Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.72-78
    • /
    • 1996
  • This thesis deals with a method to solve a two-and-one-half-dimensional ($2\frac12$ D) problem, which means that the ocean environment is two-dimensional whereas the source is fully three-dimensionally propagating, including three-dimensional refraction phenomena and three-dimensional back-scattering, using two-dimensional two-way parabolic equation method combined with Fourier synthesis. Two dimensional two-way parabolic equation method uses Galerkin's method for depth and Crank-Nicolson method and alternating direction for range and provides a solution available to range-dependent problem with wave-field back-scattered from discontinuous interface. Since wavenumber, k, is the function of depth and vertical or horizontal range, we can reduce a dimension of three-dimensional Helmholtz equation by Fourier transforming in the range direction. Thus transformed two-dimensional Helmholtz equation is solved through two-way parabolic equation method. Finally, we can have the $2\frac12$ D solution by inverse Fourier transformation of the spectral solution gained from in the last step. Numerical simulation has been carried out for a canonical ocean environment with stair-step bottom in order to test its accuracy using the present analysis. With this spectral parabolic equation method, we have examined three-dimensional acoustic propagation properties in a specified site in the Korean Straits.

  • PDF

Method for Determining the Deficient and Solid Pulse with a New Pulse Wave Parameter (새로운 맥상 파라메터를 이용한 허실맥 판단 방법)

  • Kim, Sung-Hun;Kim, Jae-Uk;Jeon, Young-Ju;Kim, Keun-Ho;Kim, Jong-Yoel
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.42-47
    • /
    • 2010
  • The pulse diagnosis is an important method in Oriental Medicine. Recently, there have been continuous attempts to replace the finger palpation by Oriental medical doctors (OMDs) by more objective tools based on machines, e.g., pulse analyzers. To improve the performance of the pulse analyzers, both the machine-appropriate interpretations for the pulse images appeared in the literature and the improvement in the repeatability and reproducibility of the measurement sensors are to be developed. As an attempt towards the transformation of the pulse images in terms of machine-appropriate language, in this work, we suggest an upgraded algorithm for the solid/deficient pulses, which are the two representative pulse images informing us how strong the pulse pressure is. It has been argued that one could determine the solid/deficient pulses by the maximum pulse pressure from pulse analyzers. However, by a clinical test, we found that the maximum pulse pressure alone is not sufficient to determine the solid/deficient pulses. In addition to the maximum pulse pressure, the mean pulse pressure averaged over for five different hold-down pressures(3-D MAC) is needed to improve the agreement with the OMD's decision for the solid/deficient pulse. We found that, among the data diagnosed with having either the solid pulse or deficient pulse by OMDs, the novel algorithm showed 86.0% diagnosis rate and 81.6% concordance rate.

A study on the efficient operation program of digital protection relay in DC feeder system (DC 급전계통의 디지털 보호계전기의 합리적 운용방안 검토)

  • Lee, Kyung-Goo;Hyun, Yong-Sub;Hong, Sung-Lae;Baek, Jae-Woo;Min, Yong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.946-958
    • /
    • 2009
  • Lately, Seoul metro is changing transformation facilities which have been operated in subway line 1 and 2 for a long duration of time. Although the exiting protection relays in DC feeder system have such several functions as 76I, 50, 85, and 64P, the new protective relay have a great variety of functions such as 76I, 76D, DDL-I, DDL-T(Imin), 85, and 64P, as well as record and save various events and accident wave in order to review and analyze the working causes of the protective system. However, because the new digital relays are not used properly for protective propose, there are the cases that the electric accident is deteriorated more. Therefore, in this paper, we will describe that making the use studying installation intention, direction, and setting up value of the protection relay in DC breaker operation not only prevents from making the electric accident worse but also shows the efficient operation method of direct current protection system.

  • PDF

EEG Analysis Following Change in Hand Grip Force Level for BCI Based Robot Arm Force Control (BCI 기반 로봇 손 제어를 위한 악력 변화에 따른 EEG 분석)

  • Kim, Dong-Eun;Lee, Tae-Ju;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.172-177
    • /
    • 2013
  • With Brain Computer Interface (BCI) system, a person with disabled limb could use this direct brain signal like electroencephalography (EEG) to control a device such as the artifact arm. The precise force control for the artifact arm is necessary for this artificial limb system. To understand the relationship between control EEG signal and the gripping force of hands, We proposed a study by measuring EEG changes of three grades (25%, 50%, 75%) of hand grip MVC (Maximal Voluntary Contract). The acquired EEG signal was filtered to obtain power of three wave bands (alpha, beta, gamma) by using fast fourier transformation (FFT) and computed power spectrum. Then the power spectrum of three bands (alpha, beta and gamma) of three classes (MVC 25%, 50%, 75%) was classified by using PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis). The result showed that the power spectrum of EEG is increased at MVC 75% more than MVC 25%, and the correct classification rate was 52.03% for left hand and 77.7% for right hand.

Study on the Reconstruction of KSTAR Plasma Density Profiles Using Microwave Reflectometry (마이크로파 레플렉토메터리를 이용한 KSIAR 플라즈마 밀도분포 재구성에 관한 연구)

  • Roh Young-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.8
    • /
    • pp.365-370
    • /
    • 2005
  • Microwave diagnostics have been widely utilized to measure the important parameters of high temperature and high density plasmas. Reflectometry is known as a promising microwave diagnostic which has a number of merits to measure electron density profiles. In the KSTAR device, X-mode FM reflectometry is planned to measure the plasma density profiles. FM reflectometry is required to extract phase information on raw mixer IF signals, thereby obtaining time-of-flight of reflectometry signals. It is known that the data analysis method is crucial to determine the performance of FM reflectometry In fact, there are several analysis programs which have been utilized in various FM systems. Since each program was developed for a specific device, however, it is difficult to directly apply it to a different reactor like the KSTAR device. It is necessary, therefore, to develop a data analysis program for the KSTAR FM reflectometry. In this paper, complex digital demodulation (CDM) and wavelet transformation are examined in terms of the performance of density profile reconstruction. For the comparison of both methods, FM reflectometry signals are generated on the basis of assumed profiles and the interaction of the X-mode wave and the plasma. In order to see how well both methods work under various conditions, three types of profiles are assumed and noise effects are included. As a result, both methods work well under the condition of gentle density gradient and small noise level. As density gradient becomes steeper and noise level gets higher. the reconstruction performance of wavelet is better than that of CDM.