• Title/Summary/Keyword: Wave Structure

Search Result 2,769, Processing Time 0.034 seconds

Design of a optimum structure for Ultrasonic Linear Motor using a travelling wave (진행파를 이용한 직선형 초음파 모터의 최적구조 설계)

  • 김연보;한우석;노용래
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.4
    • /
    • pp.280-285
    • /
    • 2000
  • The conventional ultrasonic linear motors developed so far utilize a standing wave and are of a pi-type or a hybrid transducer type structure. Traveling wave type bi-direction linear motors have not been developed yet. This paper describes design of a new bi-directional ultrasonic linear motor working by means of a traveling wave. With the finite element method we design and verify validity of the new structure. And we determine its optimal structure size of design variables material and boundary conditions for proper generation of the traveling wave.

  • PDF

Experimental study for Hydraulic Characteristics as the Permeable underlayer width of Rubble Mound Structure (사석방파제 투수층 두께에 따른 사면상의 수리특성에 관한 실험연구)

  • 윤한삼;남인식;김종욱;류청로
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.160-165
    • /
    • 2001
  • In this study, the effects on hydraulic characteristics are discussed as the permeable underlayer width of the rubble mound structure changes. A series of hydraulic experiments were performed and wave run-up, reflection and set-up were investigated. Results indicated that wave run-down was affected by the water out from the permeable underlayer during down-rush. As the width increased, relative wave run-up decreased.

  • PDF

A Study of Frequency Domain Analysis of Impact-wave for Detecting of Structural Defects in the Concrete Structure (구조물의 안전진단을 위한 충격파의 주파수 영역 탐사에 관한 연구)

  • Kim, Hyoung-Jun;Lee, Sang-Chul;Suh, Baek-Soo
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.115-120
    • /
    • 2005
  • Impact seismic wave method is a method for non-destructive testing of concrete structure using of stress wave which is propagate and reflected from internal flaws within concrete structure and external surface. In this study, we performed frequency domain method using impact seismic wave test for safety diagnosis of civil engineering structure. And reflection method which is used for one-dimensional target such as tunnel lining and transmission method are compared with each other.

  • PDF

The Phase Difference Effects on 3-D Structure of Wave Pressure Acting on a Composite Breakwater (혼성방파제에 작용하는 3차원 파압구조에 미치는 위상차의 영향)

  • Hur, Dong-Soo;Yeom, Gyeong-Seon;Bae, Ki-Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.563-572
    • /
    • 2006
  • In designing the coastal structures, the accurate estimation of wave forces on them is very important. Recently, the empirical formulae such as Goda formula are widely used to estimate wave forces, as well as 2-D hydraulic and numerical model tests. But, sometimes, these estimation methods mentioned above seem to be unreasonable to predict 3-D structure of wave pressure on the coastal structures with 3-D plane arrangement in the real coastal area. Especially, in case of consideration of phase difference at harbor and seaward sides of the large-sized coastal structures like a composite breakwater, it is easily expected that the real wave pressures on each section of coastal structure have 3-D distribution. A new numerical model of 3-D Large Eddy Simulation, which is applicable to permeable structure, is developed to clarify the 3-D structure of wave pressures acting on coastal structure. The calculated wave forces on 3-D structure installed on the submerged breakwater show in good agreement with the measured values. In this study, the composite breakwater is adopted as a representative structure among the large-sized coastal structures and the 3-D structure of wave pressures on it is discussed in relation to the phase difference at harbor and seaward sides of it due to wave diffraction and transmitted wave through rubble mound.

Impact of a shock wave on a structure strengthened by rigid polyurethane foam

  • Mazek, Sherif A.;Mostafa, Ashraf A.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.569-585
    • /
    • 2013
  • The use of the rigid polyurethane foam (RPF) to strengthen sandwich structures against blast terror has great interests from engineering experts in structural retrofitting. The aim of this study is to use the RPF to strengthen sandwich steel structure under blast load. The sandwich steel structure is assembled to study the RPF as structural retrofitting. The filed blast test is conducted. The finite element analysis (FEA) is also used to model the sandwich steel structure under shock wave. The sandwich steel structure performance is studied based on detonating different TNT explosive charges. There is a good agreement between the results obtained by both the field blast test and the numerical model. The RPF improves the sandwich steel structure performance under the blast wave propagation.

Nonlinear Wave Transformation of a Submerged Coastal Structure (잠수구조물에 의한 비선형파랑변형에 관한 연구)

  • Kim, W. K.;Kang, I. S.;Kwak, K. S.;Kim, D. S.
    • Journal of Korean Port Research
    • /
    • v.8 no.1
    • /
    • pp.41-47
    • /
    • 1994
  • The present paper discusses the nonlinear wave deformation due to a submerged coastal structure. Theory is based on the frequency-domain method using the third order perturbation and boundary integral method. Theoretical development to the second order perturbation and boundary integral method. Theoretical development to the second order Stokes wave for a bottom-seated submerged breakwater to the sea floor is newly expanded to the third order for a submerged coastal structure shown in Figure 1. Validity is demonstrated by comparing numerical results with the experimental ones of a rectangular air chamber structure, which has the same dimensions as that of this study. Nonlinear waves become larger and larger with wave propagation above the crown of the structure, and are transmitted to the onshore side of the structure. These characteristics are shown greatly as the increment of Ursell number on the structure. The total water profile depends largely on the phase lag among the first, second and third order component waves.

  • PDF

A Study on Behaviour Characteristics Analysis and Materials Design Strength Decision of the Coastal Structures under Sea Wave Loads (파랑하중을 받는 해안구조물의 거동특성 분석 및 재료 설계강도 산정에 관한 연구)

  • Chung, Jeeseung;Moon, Ingi;Yoo, Chanho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.57-66
    • /
    • 2013
  • Coastal structures are functioning in complex natural phenomena such as wave, tide, seawater penetration and abrasion. So the behavior of the coastal structures material is important, because coastal structure material is directly linked to stability of the coastal structures. For this reason, to determine the behaviour characteristics, material design standard is required on the coastal structure under sea wave load. Especially, identification on the behavior of the coastal structure has not been investigated yet properly considering interaction structure and sea wave load. In this study, to identify the behaviour characteristics of the coastal structure caused by waves, the behavior of the coastal structure depending on the magnitude of the wave loads was intensively analyzed.

Wave Structure Interaction by Installation of New Circular Caissons on Old Circular Caisson Breakwater (기존 원형케이슨방파제에 신규 원형케이슨 추가설치에 따른 파와 구조물간의 상호작용 영향 평가)

  • Park, Min Su
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.307-321
    • /
    • 2020
  • The design and the construction are carried out by installation of new caissons on the back or the front of old caissons to increase the stability of old caisson breakwater. In this study, we use the eigenfunction expansion method to analyze the effects of wave structure interaction when new circular caissons are installed on the back or the front of old caissons. The comparison of numerical results between present method and Williams and Li is made, and the wave force and the wave run-up acting on each circular caisson are calculated for various parameters by considering the wave structure interaction.

Experimental Study on Wave Transmission Coefficients of Submerged Structures: III. Impermeable-Type Structure (수중구조물의 파고전달계수 산정 실험 : III. 불투과형 수중구조물)

  • Lee, Jong-In;Cho, Ji Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.593-601
    • /
    • 2020
  • Two-dimensional laboratory experiments were conducted in a wave flume to investigate the wave transmission phenomena of impermeable-type submerged structures armored by concrete blocks. Different experimental conditions were included by considering relative crest depth, relative freeboard, relative crest width, wave steepness, and so on. An empirical formula was proposed to predict the wave transmission coefficients over various specifications and structural designs of the impermeable submerged structure from the experimental results. The proposed formula successfully predicted the wave transmission coefficients. Therefore, in this study, the proposed empirical formula of the wave transmission over an impermeable submerged structure was improved from the existing formula.

A Study of Slow Wave Microwave Waveguide on Period Boundary (주기경계를 갖는 지파 마이크로파 도파관의 연구)

  • Kim, Won-Sop
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.461-464
    • /
    • 2009
  • The characteristics of slow wave structure employed for backward wave oscillators expected to be a high power microwave source are studied analyytically. The slow wave structure is a sinusoidally corrugated wall waveguide. The waveguide is designed and fabricated by cast aluminun. The dispersion relation and transmitted characteristics for microwaves are measured in the air. There exist literatures on high efficiency of enhanced radiation from backward wave oscillators involving plasma studied experimentally.