• Title/Summary/Keyword: Wave Spectrum

Search Result 787, Processing Time 0.033 seconds

Hindcasting Analysis of Swells Occurred in the East Coast in February 2008 (2008년 2월 동해안에서 발생한 너울의 예측 분석)

  • Kim, Tae-Rim;Lee, Kang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.2
    • /
    • pp.62-67
    • /
    • 2010
  • Swells occurred on the coast of the East Sea on February 24, 2008 caused a loss of three lives and also damaged several west coasts of Japan. The recent increase of swell intensity with number of accidents demands more accurate forecasting of swells in terms of time and location. The swells occurred in February 2008 are hindcasted using SWAN model to examine the accuracy of the model for future forecasting. The model results are compared with ReWW3 data as well as measurement wave data and specially, wave spectrum is analysed by comparing with observed spectrum at two wave stations located in the east coast of Korea. The SWAN model shows similar results with observation data in terms of significant wave heights and swell arrival time but the shapes of wave spectrum are different between model and in-situ measurement data. For further improvement of swell forecasting, more comparison and analysis with observed wave spectrum is necessary and wave directional spectrum data are required to study on the characteristics of swells in the East Sea.

Fast Measurement using Wave-Cutoff Method

  • Seo, Sang-Hun;Na, Byeong-Geun;Yu, Gwang-Ho;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.30-30
    • /
    • 2011
  • The wave-cutoff tool is a new diagnostic method to measure electron density and electron temperature. Most of the plasma diagnostic tools have the disadvantage that their application to processing plasma where toxic and reactive gases are used gives rise to many problems such as contamination, perturbation, precision of measurement, and so on. We can minimize these problems by using the wave-cutoff method. Here, we will present the results obtained through the development of the wave-cutoff diagnostic method. The frequency spectrum characteristics of the wave-cutoff probe will be obtained experimentally and analyzed through the microwave field simulation by using the CST-MW studio simulator. The plasma parameters are measured with the wave-cutoff method in various discharge conditions and its results will be compared with the results of Langmuir probe. Another disadvantage is that other diagnostic methods spend a long time (~ a few seconds) to measure plasma parameters. In this presentation, a fast measurement method will be also introduced. The wave-cutoff probe system consists of two antennas and a network analyzer. The network analyzer provides the transmission spectrum and the reflection spectrum by frequency sweeping. The plasma parameters such as electron density and electron temperature are obtained through these spectra. The frequency sweeping time, the time resolution of the wave-cutoff method, is about 1 second. A short pulse with a broad band spectrum of a few GHz is used with an oscilloscope to acquire the spectra data in a short time. The data acquisition time can be reduced with this method. Here, the plasma parameter measurement methods, Langmuir probe, pulsed wave-cutoff method and frequency sweeping wave-cutoff method, are compared. The measurement results are well matched. The real time resolution is less than 1 ?sec. The pulsed wave-cutoff technique is found to be very useful in the transient plasmas such as pulsed plasma and tokamak edge plasma.

  • PDF

Quantitative Recognition of Stable State of EEG using Wavelet Transform and Power Spectrum Analysis (웨이브렛 변환과 파워스펙트럼 분석을 통한 EEG 안정상태의 정량적 인식)

  • Kim, Young-Sear;Park, Seung-Hwan;Nam, Do-Hyun;Kim, Jong-Ki;Kil, Se-Kee;Min, Hong-Ki
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.178-184
    • /
    • 2007
  • The EEG signal in general can be categorized as the Alpha wave, the Beta wave, the Theta wave, and the Delta wave. The alpha wave, showed in stable state, is the dominant wave for a human EEG and the beta wave displays the excited state. The subject of this paper was to recognize the stable state of EEG quantitatively using wavelet transform and power spectrum analysis. We decomposed EEG signal into the alpha wave and the beta wave in the process of wavelet transform, and calculated each power spectrum of EEG signal, using Fast Fourier Transform. And then we calculated the stable state quantitatively by stable state ratio, defined as the power spectrum of the alpha wave over that of the beta wave. The study showed that it took more than 10 minutes to reach the stable state from the normal activity in 69 % of the subjects, 5 -10 minutes in 9%, and less than 5 minutes in 16 %.

  • PDF

Systematic Approach for Predicting Irregular Wave Transformation (불규칙파랑의 계통적 취급수법)

  • 권정곤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.2
    • /
    • pp.83-95
    • /
    • 1990
  • It can be assumed that the ocean waves consist of many independent pure sinusoidal components which progress in arbitrary directions. To analyze irregular sea waves, both the spectrum method and the individual wave method have been used. The spectral approach is valid in the region where the water depth is deep and the linear property of velocity distribution is predominent, while the individual wave analysis method in the region where the water depth is shallow and the wave nonlinearity is significant. Therefore, to investigate the irregular wave transformation from the deep water to the shallow water region, it is necessary to relate the frequency spectrum which is estimated by the spectrum analysis method to the i oint probability distribution of wave height, period and direction affected by the boundary condition of the individual wave analysis method. It also becomes important to define the region where both methods can be applied. This study is a part of investigation to establish a systematic approach for analyzing the irregular wave transformation. The region where the spectral approach can be applied is discussed by earring out the experiments on the irregular wave transformation in the two-dimensional wave tank together with the numerical simulation. The applicability of the individual wave analysis method for predicting irregular wave transformation including wave shoaling and breaking and the relation between frequency spectrum and joint probability distribution of wave height and period are also investigated through the laboratory experiment and numerical simualtion.

  • PDF

A Study on the Wave Generating Characteristics of the Multi-directional Irregular Wave Basin (다방향불규칙파 조파수조의 조파특성에 관한 연구)

  • SOHN Byung-Kyu;RYU Cheong-Ro
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.705-712
    • /
    • 2001
  • It is of great importance to represent the directional ocean waves in a laboratory basin for hydraulic model tests. The directional ocean waves can be expressed as a linear superposition of a large number of component waves with different frequencies and propagating directions. The aim of the study is to check the wave generating characteristics by serpent-type wave generating system in PKNU (Pukyong National University) which is composed of 10 piston-type wave generators. In the experiment, spatial variation of irregular wave heights and propagating angles are measured in the multi-directional wave maker basin. Target wave directional spectrum is reproduced in the area of multi-directional wave maker basin. The directional spreading of the generated waves varied spacially in the basin. They differed from target spectrum as the measurement point becomes far from the center line normal to the generator face, The effective generation area where that target can be reproduced is limited to the triangular area attached the generator face. According to the results, it is emphasized that the effective experiment area in the basin considered wave generator characteristics should be determined in consideration of experimental conditions including structural shapes, water depth, wave directionality etc.

  • PDF

Estimation and Analysis of Wave Spectrum Parameter using HeMOSU-2 Observation Data (HeMOSU-2 관측 자료를 이용한 파랑 스펙트럼 매개변수 추정 및 분석)

  • Lee, Uk-Jae;Ko, Dong-Hui;Kim, Ji-Young;Cho, Hong-Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.217-225
    • /
    • 2021
  • In this study, wave spectrum data were calculated using the water surface elevation data observed at 5Hz intervals from the HeMOSU-2 meteorological tower installed on the west coast of Korea, and wave parameters were estimated using wave spectrum data. For all significant wave height ranges, the peak enhancement parameter (γopt) of the JONSWAP spectrum and the scale parameter (α) and shape parameter (β) of the modify BM spectrum were estimated based on the observed spectrum, and the distribution of each parameter was confirmed. As a result of the analysis, the peak enhancement parameter (γopt) of the JONSWAP spectrum was calculated to be 1.27, which is very low compared to the previously proposed 3.3. And in the range of all significant wave heights, the distribution of the peak enhancement parameter (γopt) was shown as a combined distribution of probability mass function (PMF) and probability density function (PDF). In addition, the scale parameter (α) and shape parameter (β) of the modify BM spectrum were estimated to be [0.245, -1.278], which are lower than the existing [0.300, -1.098], and the result of the linear correlation analysis between the two parameters was β = -3.86α.

Energy Dissipation and Transfer among Wave Components during Directional Breaking Processes (다방향 쇄파 발생 전후의 파랑 성분간 에너지 전이 및 소산)

  • 홍기용;에스똘히오메자
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.1-6
    • /
    • 2003
  • Wave energy dissipation and energy transfer between wave components, during the directional wave breakings, are investigated. Directional incipient and plunging breakers were generated by focusing the multi-frequency and multi-directional wave components at a designed location, based on a constant wave amplitude and a constant wave steepness frequency spectrum. The time series of surface wave elevation was measured at 9 different locations around the wave focusing point, using a wave gauge array. In order to examine the variation of the directional spreading function, the horizontal velocity of fluid motion was also measured. By comparing energy spectrums, before and after the breaking, the characteristics of energy dissipation and energy transfer, caused by wave breaking, are investigated. Their dependencies on directionality, as well as frequency, are analyzed. The breakings significantly dissipate wave energy, through energy transfer, in the upper region of the peak-frequency band, while enhancing wave energy in the low-frequency band.

Development an embedded module for nondirectional wave spectrum analysis

  • Park, Soo-Hong;Wong, Sheng-Chao
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.454-461
    • /
    • 2008
  • This embedded module measures significant wave height and zero crossing periods through spectral energy from a record of time series heave motion. An ARM7TDMI core microcontroller serves as the main control unit which performs the appropriate control and signal conditioning. Monitored wave characteristic is transmitted with satellite modem. Mathematical equations on signal conditioning and experiments procedures are documented in this paper.

Pseudo 3D FEM analysis for wave passage effect on the response spectrum of a building built on soft soil layer

  • Kim, Yong-Seok
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1241-1254
    • /
    • 2015
  • Spatially variable ground motions can be significant on the seismic response of a structure due to the incoherency of the incident wave. Incoherence of the incident wave is resulted from wave passage and wave scattering. In this study, wave passage effect on the response spectrum of a building structure built on a soft soil layer was investigated utilizing a finite element program of P3DASS (Pseudo 3-dimensional Dynamic Analysis of a Structure-soil System). P3DASS was developed for the axisymmetric problem in the cylindrical coordinate, but it is modified to apply anti-symmetric input earthquake motions. Study results were compared with the experimental results to verify the reliability of P3DASS program for the shear wave velocity of 250 m/s and the apparent shear wave velocities of 2000-3500 m/s. Studied transfer functions of input motions between surface mat foundation and free ground surface were well-agreed to the experimental ones with a small difference in all frequency ranges, showing some reductions of the transfer function in the high frequency range. Also wave passage effect on the elastic response spectrum reduced the elastic seismic response of a SDOF system somewhat in the short period range.

Numerical Study of Wave Prediction Using a Ray Tracing Technique (파향선 추적기법을 이용한 파랑예측에 관한 연구)

  • 조원철
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.3
    • /
    • pp.236-245
    • /
    • 1996
  • A wave prediction model is used to estimate the wave spectrum at Ulsan Bay. The Wave model includes the refraction of wave rays according to water depth changes in transient and shallow waters. The calculation of wave refraction is performed from three wave directions : east, southeast and south. Three target locations are selected and the wave spectrum at each location is computed for several uniform wind speeds and directions. The computation results of wave spectrum are compared with PNJ(Pierson, Newmann and James) nomogram and Bretschneider nomogram as well. The model could be used in selection of proper harbor site and in construction of coastal facilities, providing fundamental data in design.

  • PDF