• Title/Summary/Keyword: Wave Records

Search Result 154, Processing Time 0.023 seconds

Estimation of Shear Wave Velocity of Earth Dam Materials Using Artificial Blasting Vibration Test (인공발파진동실험을 이용한 흙댐 축조재료의 전단파속도 산정)

  • Ha, Ik-Soo;Kim, Nam-Ryong;Lim, Jeong-Yeul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.619-629
    • /
    • 2013
  • The objective of this study is to estimate shear wave velocity of earth dam materials using artificially generated vibration from blasting events and to verify its applicability. In this study, the artificial blasting and vibration monitoring were carried out at the site adjacent to Seongdeok dam, which is the first blasting test for an existing dam in Korea. The vibrations were induced by 4 different types of blasting with various depths of blasting boreholes and explosive charge weights. During the tests, the acceleration time histories were recorded at the bedrock adjacent to the explosion and the crest of the dam. From frequency analyses of acceleration histories measured at the crest, the fundamental frequency of the target dam could be evaluated. Numerical analyses varying shear moduli of earth fill zone were carried out using the acceleration histories measured at the bedrock as input ground motions. From the comparison between the fundamental frequencies calculated by numerical analyses and measured records, the shear wave velocities with depth, which are closely related to shear moduli, could be determined. It is found that the effect of different blasting types on shear wave velocity estimation for the target dam materials is negligible and the shear wave velocity can be consistently evaluated. Furthermore, comparing the shear wave velocity with the previous researchers' empirical relationships, the applicability of suggested method is verified. Therefore, in case that the earthquake record is not available, the shear wave velocity of earth dam materials can be reasonably evaluated if blasting vibration test is allowed at the site adjacent to the dam.

Comparison of the Clinical and Laboratory Features of COVID-19 in Children During All Waves of the Epidemic: A Single Center Retrospective Study

  • Sunbok Suh;Hyungsu Kim
    • Pediatric Infection and Vaccine
    • /
    • v.31 no.1
    • /
    • pp.83-93
    • /
    • 2024
  • Purpose: Since the start of the coronavirus disease 2019 (COVID-19) pandemic, various variants of concern have emerged. We divided the representative COVID-19 mutation period into four waves and aimed to analyze the clinical and laboratory features of children with COVID-19 from pre-mutation wave to the middle of omicron wave. Methods: We retrospectively reviewed the medical records of hospitalized patients aged ≤19 years with laboratory confirmed COVID-19. Clinical and laboratory findings during pre-mutation (February 1st 2020 to September 30th 2020), alpha/beta (October 1st 2020 to May 31st 2021), delta (June 1st 2021 to October 31st 2021), and omicron (November 1st 2021 to May 31st 2022) waves were compared. Results: Among total 827 patients, 163 (19.7%) were asymptomatic, and the frequency of fever and cough was 320 (38.7%) and 399 (48.2%), respectively. The proportion of fever ≥38.5℃ was observed to be high during the omicron wave in the age group under 12 years. Lymphopenia was observed highly in the omicron wave in the age group under 12 years, and in the delta wave in the age group older than 12 years. Neutropenia was highly observed in the delta wave in the 0-4 years age group. Conclusions: There were distinct characteristics during all epidemic waves of COVID-19. Children with COVID-19 had more frequent persistent fever during delta wave and children during the omicron wave had a higher peak fever.

Real-time Estimation of the Earthquake Magnitude Using the Bracketed Cumulative and Peak Parameters of the Ground-motion Acceleration of a Single Station (단일 지진관측소의 지반가속도 구간 누적값 및 최대값 파라미터를 이용한 실시간 지진규모 추정 연구)

  • Yun, Kwan Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.29-36
    • /
    • 2014
  • In industrial facilities sites, the conventional method determining the earthquake magnitude (M) using earthquake ground-motion records is generally not applicable due to the poor quality of data. Therefore, a new methodology is proposed for determining the earthquake magnitude in real-time based on the amplitude measures of the ground-motion acceleration mostly from S-wave packets with the higher signal-to-ratios, given the Vs30 of the site. The amplitude measures include the bracketed cumulative parameters and peak ground acceleration (As). The cumulative parameter is either CAV (Cumulative Absolute Velocity) with 100 SPS (sampling per second) or BSPGA (Bracketed Summation of the PGAs) with 1 SPS. The arithmetic equations to determine the earthquake magnitude are derived from the CAV(BSPGA)-As-M relations. For the application to broad ranges of earthquake magnitude and distance, the multiple relations of CAV(BSPGA)-As-M are derived based on worldwide earthquake records and successfully used to determine the earthquake magnitude with a standard deviation of ${\pm}0.6M$.

New site classification system and design response spectra in Korean seismic code

  • Kim, Dong-Soo;Manandhar, Satish;Cho, Hyung-Ik
    • Earthquakes and Structures
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • A new site classification system and site coefficients based on local site conditions in Korea were developed and implemented as a part of minimum design load requirements for general seismic design. The new site classification system adopted bedrock depth and average shear wave velocity of soil above the bedrock as parameters for site classification. These code provisions were passed through a public hearing process before it was enacted. The public hearing process recommended to modify the naming of site classes and adjust the amplification factors so that the level of short-period amplification is suitable for economical seismic design. In this paper, the new code provisions were assessed using dynamic centrifuge tests and by comparing the design response spectra (DRS) with records from 2016 Gyeongju earthquake, the largest earthquake in history of instrumental seismic observation in Korea. The dynamic centrifuge tests were performed to simulate the representative Korean site conditions, such as shallow depth to bedrock and short-period amplification characteristics, and the results corroborated with the new DRS. The Gyeongju earthquake records also showed good agreement with the DRS. In summary, the new code provisions are reliable for representing the site amplification characteristic of shallow bedrock condition in Korea.

Peak ground acceleration attenuation relationship for Mazandaran province using GEP algorithm

  • Ahangari, Hamed Taleshi;Jahani, Ehsan;Kashir, Zahra
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.403-410
    • /
    • 2018
  • The choice of attenuation relationships is one of the most important parts of seismic hazard analysis as using a different attenuation relationship will cause significant differences in the final result, particularly in near distances. This problem is responsible for huge sensibilities of attenuation relationships which are used in seismic hazard analysis. For achieving this goal, attenuation relationships require a good compatibility with the target region. Many researchers have put substantial efforts in their studies of strong ground motion predictions, and each of them had an influence on the progress of attenuation relationships. In this study, two attenuation relationships are presented using seismic data of Mazandaran province in the north of Iran by Genetic Expression Programming (GEP) algorithm. Two site classifications of soil and rock were considered regarding the shear wave velocity of top 30 meters of site. The quantity of primary data was 93 records; 63 of them were recorded on rock and 30 of them recorded on soil. Due to the shortage of records, a regression technique had been used for increasing them. Through using this technique, 693 data had been created; 178 data for soil and 515 data for rock conditions. The Results of this study show the observed PGA values in the region have high correlation coefficients with the predicted values and can be used in seismic hazard analysis studies in the region.

Proposed New Evaluation Method of the Site Coefficients Considering the Effects of the Structure-Soil Interaction (구조물-지반 상호작용 영향을 고려한 새로운 지반계수 평가방법에 대한 제안)

  • Kim, Yong-Seok
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.327-336
    • /
    • 2006
  • Site coefficients in IBC and KBC codes have some limits to predict the rational seismic responses of a structure, because they consider only the effect of the soil amplification without the effects of the structure-soil interaction. In this study, upper and lower limits of site coefficients are estimated through the pseudo 3-D elastic seismic response analyses of structures built on linear or nonlinear soil layers considering the structure-soil interaction effects. Soil characteristics of site classes of A, B, and C were assumed to be linear, and those of site classes of D and E were done to be nonlinear and the Ramberg-Osgood model was used to evaluate shear modulus and damping ratio of a soil layer depending on the shear wave velocity of a soil layer. Seismic analyses were performed with 12 weak or moderate earthquake records, scaled the peak acceleration to 0.1g or 0.2g and deconvoluted as earthquake records at the bedrock 30m beneath the outcrop. With the study results of the elastic seismic response analyses of structures, new standard response spectrum and upper and lower limits of the site coefficients of Fa and Fv at the short period range and the period of 1 second are suggested Including the structure-soil interaction effects.

  • PDF

Seismic responses of structure isolated by FPB subject to pounding between the sliding interfaces considering soil-structure interaction

  • Yingna Li;Jingcai Zhang
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.463-475
    • /
    • 2024
  • The study aims to investigate the pounding that occurs between the isolator's ring and slider of isolated structures resulting from excessive seismic excitation, while considering soil-structure interaction. The dynamic responses and poundings of structures subjected a series seismic records were comparatively analyzed for three different soil types and fixed-base structures. A series of parametric studies were conducted to thoroughly discuss the effects of the impact displacement ratio, the FPB friction coefficient ratio, and the radius ratio on the structural dynamic response when considering impact and SSI. It was found that the pounding is extremely brief, with an exceptionally large pounding force generated by impact, resulting in significant acceleration pulse. The acceleration and inter-story shear force of the structure experiencing pounding were greater than those without considering pounding. Sudden changes in the inter-story shear force between the first and second floors of the structure were also observed. The dynamic response of structures in soft ground was significantly lower than that of structures in other ground conditions under the same conditions, regardless of the earthquake wave exciting the structure. When the structure is influenced by pulse-type earthquake records, its dynamic response exhibits a trend of first intensifying and then weakening as the equivalent radius ratio and friction coefficient ratio increase. However, it increases with an increase in the pounding displacement ratio, equivalent radius ratio, friction coefficient ratio, and displacement ratio when the structures are subjected to non-pulse-type seismic record.

Development for the function of Wind wave Damage Estimation at the Western Coastal Zone based on Disaster Statistics (재해통계기반 서해 연안지역의 풍랑피해예측함수 개발)

  • Choo, Tai Ho;Kwak, Kil Sin;Ahn, Si Hyung;Yang, Da Un;Son, Jong Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.14-22
    • /
    • 2017
  • The frequency and scale of natural disasters due to the abnormal climate phenomena caused by global warming have being increasing all over the world. Various natural disasters, such as typhoons, earthquakes, floods, heavy rain, drought, sweltering heat, wind waves, tsunamis and so on, can cause damage to human life. Especially, the damage caused by natural disasters such as the Earthquake of Japan, hurricane Katrina in the United States, typhoon Maemi and so on, have been enormous. At this stage, it is difficult to estimate the scale of damage due to (future) natural disasters and cope with them. However, if we could predict the scale of damage at the disaster response level, the damage could be reduced by responding to them promptly. In the present study, therefore, among the many types of natural disaster, we developed a function to estimate the damage due to wind waves caused by sea winds and waves. We collected the damage records from the Disaster Report ('91~'14) published by the Ministry of Public Safety and Security about wind waves and typhoons in the western coastal zone and, in order to reflect the inflation rate, we converted the amount of damage each year into the equivalent amount in 2014. Finally, the meteorological data, such as the wave height, wind speed, tide level, wave direction, wave period and so on, were collected from the KMA (Korea Meteorological Administration) and KHOA (Korea Hydrographic and Oceanographic Agency)'s web sites, for the periods when wind wave and typhoon damage occurred. After that, the function used to estimate the wind wave damage was developed by reflecting the regional characteristics for the 9 areas of the western coastal zone.

Crustal Structure Study and Characteristics of Moho Discontinuities beneath the Seoul and Inchon Stations using Teleseismic Receiver Functions (원격 수신함수를 이용한 서울과 인천 관측소 하부의 지각 속도구조와 Moho 불연속면 특성 연구)

  • Lee, Seoung Kyu;Kim, So Gu
    • Economic and Environmental Geology
    • /
    • v.31 no.4
    • /
    • pp.339-347
    • /
    • 1998
  • The purpose of this study is to find P-wave crustal velocity structure and the Moho characteristics beneath Seoul (SEO) and Inchon (INCN) stations using broadband teleseismic records. The use of broadband receiver function analysis is increasing to estimate the fine-scale velocity structure of the lithosphere. The broadband receiver functions are developed from teleseismic events of P waveforms recorded at Seoul (SEO) and Inchon (INCN) stations, and are analyzed to examine the crustal structure beneath the stations. The teleseismic receiver functions are inverted in the time domain of the vertical P wave velocity structures beneath the stations. The crustal velocity structures beneath the stations are estimated using the receiver function inversion method (Ammon et al., 1990). The general features of inversion results are as follows: (1) For the Seoul station, the Conrad and Moho discontinuities exist at 22 km and 30 km depth in the south ($BAZ=180^{\circ}$) direction. (2) For the Inchon station, the Conrad discontinuity exists at 22 km depth in the direction of SE ($BAZ=145^{\circ}$) and the Moho discontinuity exists at 30~34 km depth with a 4 km thick, which consists of a laminated velocity transition layers with thickness, whereas a crust-mantle boundary beneath the Seoul station consists of a more sharp boundary compared with the Moho shape of INCN station.

  • PDF

The Variation of Compressional Wave Velocity with Degree of Saturation in Granites

  • Lee, Su-Gon
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.177-197
    • /
    • 1999
  • The measurement of sonic velocities is commonly used as an index of engineering properties of rock, but it is not widely appreciated that this velocity can change markedly with the degree of saturation of the sample. This paper records the nature of this variation as seen in samples of Korean granite. The ISRM method of testing suggested for this index can also create difficulties, especially if vaseline is used as a coupling agent, and invades the samples, and if the sample volume changes with degree of saturation. Careful measurements of the natural variation in sonic velocity that occur in a sample whose saturation is gradually increased may be a means of assessing the relic stresses within it.

  • PDF