• 제목/요약/키워드: Wave Power Conversion

검색결과 169건 처리시간 0.025초

Terahertz Generation Based on Cascaded Difference Frequency Generation with Periodically-poled KTiOPO4

  • Li, Zhongyang;Wang, Silei;Wang, Mengtao;Wang, Weishu
    • Current Optics and Photonics
    • /
    • 제1권2호
    • /
    • pp.138-142
    • /
    • 2017
  • Terahertz (THz) generation by periodically-poled $KTiOPO_4$ (PPKTP) with a quasi-phase-matching scheme based on cascaded difference frequency generation (DFG) processes is theoretically analyzed. The cascaded Stokes interaction processes and the cascaded anti-Stokes interaction processes are investigated from coupled wave equations. THz intensities and quantum conversion efficiency are calculated. Compared with non-cascaded DFG processes, THz intensities from 10-order cascaded DFG processes are increased to 5.53. The quantum conversion efficiency of 479.4% in cascaded processes, which exceeds the Manley-Rowe limit, can be realized.

Performance Prediction of an OWC Wave Power Plant with 3-D Characteristics in Regular Waves

  • Hong, Do-Chun;Hong, Keyyong
    • 한국항해항만학회지
    • /
    • 제36권9호
    • /
    • pp.729-735
    • /
    • 2012
  • The primary wave energy conversion by a three-dimensional bottom-mounted oscillating water column (OWC) wave power device in regular waves has been studied. The linear potential boundary value problem has been solved following the boundary matching method. The optimum shape parameters such as the chamber length and the depth of the front skirt of the OWC chamber obtained through two-dimensional numerical tests in the frequency domain have been applied in the design of the present OWC chamber. Time-mean wave power converted by the OWC device and the time-mean second-order wave forces on the OWC chamber structure have been presented for different wave incidence angles in the frequency-domain. It has been shown that the peak period of $P_m$ for the optimum damping parameter coincides with the peak period of the time.mean wave drift force when ${\gamma}=0$.

Development of an Unmanned Control System of Induction Generator for a Wave Power Plant

  • Hwan, Jeon-Bong;Lim, Yong-Kon;Hong, Seok-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.74.5-74
    • /
    • 2001
  • The wave power plant is a generating system to convert the wave energy resources to electric energy. ´CHUJEON A´, which is a prototype of wave power plant developed by KORDI(Korea Ocean Research and Development Institute), has been launched for its performance test. A wound rotor induction machine is adopted as a generator for the power plant to acquire constant frequency and voltage over wide range of rotor speed. Because the generator of ´CHUJEON A´ has no connection to the power grid line on land, all of the processes to generate and consume the electricity have to be conducted on the floating plant. This paper deals with the design and implementation of the unmanned control system for ´CHUJEON A´. The system includes generator control system, power conversion and charging system, data acquisition and wireless communication system ...

  • PDF

수평판 설치에 따른 방파제형 파력 발전 시스템의 영향에 대한 연구 (The Study on the Effects of Breakwater Energy Conversion System by Horizontal Plate Installation)

  • 정성영;오진석
    • 한국항해항만학회지
    • /
    • 제38권1호
    • /
    • pp.39-44
    • /
    • 2014
  • 최근 전 세계적으로 고유가 상황이 지속됨에 따라 신재생에너지원에 대한 연구가 활발히 진행되고 있다. 그중 해양에너지는 그 양이 매우 많고 밀도가 높기 때문에 활용성이 높다. 특히 우리나라의 경우 삼면이 바다로 둘러싸여있기 때문에 해양에너지원이 매우 풍부하다. 본 논문은 해양에너지를 전력으로 변환하는 시스템중 하나인 방파제형 파력발전 시스템에 수평판 설치를 통한 발전 효율 향상에 관하여 서술하였다. 기존의 방파제형 파력발전 상부에 수평판을 설치함으로써 시스템의 전력변환효율을 향상시킬 수 있으나 아직까지 국내에서는 이에 대한 연구가 미흡하다. 본 논문에서는 조파수조 실험을 통하여 수평판이 방파제형 파력발전 시스템에 미치는 영향에 대해 분석하고, 본 시스템에 적합한 수평판 설치에 대해 제안한다.

파력발전용 새로운 공기터빈 개발에 관한 연구 (Study of a New Air Turbine for Wave Energy Conversion)

  • 김태호;뢰호구준명;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.955-960
    • /
    • 2001
  • In order to develop an efficient turbine for wave energy conversion suitable for actual ocean conditions, a new type of the air turbine with staggered blades has been investigated experimentally. Experiments have been carried out under steady flow conditions. Both the running and starting characteristics under sinusoidally oscillating flow conditions are simulated by a CFD method using a quasi-steady analysis. It is known that the air turbine with staggered blades gives a better performance compared with conventional Wells turbine, and a proper design factor of the air turbine is discussed for the setting angle of the rotor.

  • PDF

파력발전용 레이디얼터빈성능에 관한 연구 (Study of the radial Turbine for Wave Energy Conversion)

  • 김태호;김희동;뇌호구준명
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.549-552
    • /
    • 2002
  • The objective of this study is to clarify the detailed performances of the impulse type radial turbine and to present an optimum configuration of the turbine. The impulse type radial turbine has been manufactured and investigated experimentally under steady and sinusoidally oscillating flow conditions by model testing. Then, the starting characteristics under sinusoidally flow conditions have been evaluated by a numerical simulation using a quasi-steady analysis. As a result, the running and starting characteristics of the impulse type radial turbine for wave energy conversion have been clarified. Furthermore, the recommended configuration is presented, especially for setting angles of inner and outer guide vanes.

  • PDF

파랑에너지 변환용 충동터빈의 2차원 유동해석 (2-Dimensional Flow Analysis of Impulse Turbine for Wave Energy Conversion)

  • 김영국;이형구;김태식;이연원;김남석
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.21-27
    • /
    • 2001
  • This paper describes numerical analysis of the impulse turbine with fixed guide vanes, a high performance bi-directional air turbine having simple structure for wave energy conversion. The numerical analysis of the 2-dimensional incompressible viscous flow based on the full Reynold-averaged Navier-Stokes equations which was made to investigate the internal flow behavior. Numerical results are compared with experimental data obtained by T.Setoguchi laboratory. As a result, as suitable choice of design factor has been clarified with the understanding of the internal flow from the numerical analysis.

  • PDF

Utility AC Frequency to High Frequency ACPower Conversion Circuit with Soft Switching PWM Strategy

  • Sugimura Hisayuki;Ahmed Nabil A.;Ahmed Tarek;Lee Hyun-Woo;Nakaoka Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권2호
    • /
    • pp.181-188
    • /
    • 2005
  • In this paper, a DC smoothing filterless soft switching pulse modulated high frequency AC power conversion circuit connected to utility. frequency AC power source is proposed for consumer induction heating hot water producer, steamer and super heated steamer. The operating principle of DC link filterless utility frequency AC-high frequency AC (HF AC) power conversion circuit defined as high frequency cycloinverter is described, which can operate under a principle of ZVS/AVT and power regulation based on alternate asymmetrical PWM in synchronization with the utility frequency single phase AC positive or negative half wave voltage. The dual mode modulation control scheme based on high frequency PWM and commercial frequency AC voltage PDM for the proposed high frequency cycloinverter are discussed to enlarge its soft switching commutation operating range for wide HF AC power regulation. This high frequency cycloinverter is developed for high frequency IH Dual Packs Heater (DPH) type boiler used in consumer and industrial fluid pipeline systems. Based on the experiment and simulation results, this high frequency cycloinverter is proved to be suitable for the consumer use IH-DPH boiler and hot water producers. The cycloinverter power regulation and power conversion efficiency characteristics are evaluated and discussed.

파랑 에너지 변환을 위한 월파제어구조물의 월파량 산정 실험 (Experimental Study on Wave Overtopping Rate of Wave Overtopping Control Structure for Wave Energy Conversion)

  • 신승호;홍기용
    • 한국해양공학회지
    • /
    • 제19권6호통권67호
    • /
    • pp.8-15
    • /
    • 2005
  • Wave energy has been considered to be one of the most promising energy resources for the future, as it is pollution-free and an abundant natural resource. However, since it has drawbacks of non-stationary energy density, it is necessary to change the wave energy into a simple concentrated energy. Progressive waves in a coastal area can be amplified, swashed, and overtopped by a wave overtopping control structure. By conserving the quantity of overflow in a reservoir, the kinetic energy of the waves can be converted to the potential energy with a hydraulic head above the mean sea level. The potential energy in the form of a hydraulic head can be utilized to produce electric power, similar to hydro-electric power generation. This study aims to find the most optimal shape of wave overtopping structure for maximum overtopping volume of sea water; for this purpose, we carried out the wave overtopping experiment in a wave tank, under both regular and irregular wave conditions.

Investigation on Terahertz Generation by GaP Ridge Waveguide Based on Cascaded Difference Frequency Generation

  • Li, Zhongyang;Zhong, Kai;Bing, Pibin;Yuan, Sheng;Xu, Degang;Yao, Jianquan
    • Journal of the Optical Society of Korea
    • /
    • 제20권1호
    • /
    • pp.169-173
    • /
    • 2016
  • Terahertz (THz) generation by a GaP ridge waveguide with a collinear modal phase-matching scheme based on cascaded difference frequency generation (DFG) processes is theoretically analyzed. The cascaded Stokes interaction processes and the cascaded anti-Stokes interaction processes are investigated from coupled wave equations. THz intensities and quantum conversion efficiency are calculated. Compared with non-cascaded DFG processes, THz intensities from 11-order cascaded DFG processes are increased to 5.48. The quantum conversion efficiency of 177.9% in cascaded processes can be realized, exceeding the Manley-Rowe limit.