• Title/Summary/Keyword: Wave Interaction Theory

Search Result 115, Processing Time 0.026 seconds

Design theory and method of LNG isolation

  • Sun, Jiangang;Cui, Lifu;Li, Xiang;Wang, Zhen;Liu, Weibing;Lv, Yuan
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • To provide a simplified method for the base isolation design of LNG tanks, such as $16{\times}104m^3$ LNG tanks, we conducted a derivation and calculation example analysis of the dynamic response of the base isolation of LNG storage tanks, using dynamic response analysis theory with consideration of pile-soil interaction. The ADINA finite element software package was used to conduct the numerical simulation analysis, and compare it with the theoretical solution. The ground-shaking table experiment of LNG tank base isolation was carried out simultaneously. The results show that the pile-soil interaction is not obvious under the condition of base isolation. Comparing base isolation to no isolation, the seismic response clearly decreases, but there is less of an effect on the shaking wave height after adopting pile top isolation support. This indicates that the basic isolation measures cannot control the wave height. A comparison of the shaking table experiment with the finite element solution and the theoretical solution shows that the finite element solution and theoretical solution are feasible. The three experiments are mutually verified.

Energy extraction from the motion of an oscillating water column

  • Wang, Hao;Falzarano, Jeffrey M.
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.327-348
    • /
    • 2013
  • An Oscillating Water Column (OWC) is a relatively practical and convenient device that converts wave energy to a usable form, which is electricity. The OWC is kept inside a fixed truncated vertical cylinder, which is a hollow structure with one open end submerged in the water and with an air turbine at the top. This research adopts potential theory and Galerkin methods to solve the fluid motion inside the OWC. Using an air-water interaction model, OWC design for energy extraction from regular wave is also explored. The hydrodynamic coefficients of the scattering and radiation potentials are solved for using the Galerkin approximation. The numerical results for the free surface elevation have been verified by a series of experiments conducted in the University of New Orleans towing tank. The effect of varying geometric parameters on the response amplitude operator (RAO) of the OWC is studied and modification of the equation for evaluating the natural frequency of the OWC is made. Using the model of air-water interaction under certain wave parameters and OWC geometric parameters, a computer program is developed to calculate the energy output from the system.

Hydrodynamic forces on blocks and vertical wall on a step bottom

  • Mondal, Ramnarayan;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.485-497
    • /
    • 2020
  • A study, using potential water wave theory, is conducted on the oblique water wave motion over two fixed submerged rectangular blocks (breakwaters) placed over a finite step bottom. We have considered infinite and semi-infinite fluid domains. In both domains, the Fourier expansion method is employed to obtain the velocity potentials explicitly in terms of the infinite Fourier series. The unknown coefficients appearing in the velocity potentials are determined by the eigenfunction expansion matching method at the interfaces. The derived velocity potentials are used to compute the hydrodynamic horizontal and vertical forces acting on the submerged blocks for different values of block thickness, gap spacing between the two blocks, and submergence depth of the upper block from the mean free surface. In addition, the wave load on the vertical wall is computed in the case of the semi-infinite fluid domain for different values of blocks width and the incident wave angle. It is observed that the amplitudes of hydrodynamic forces are negligible for larger values of the wavenumber. Furthermore, the upper block experiences a higher hydrodynamic force than the lower block, regardless of the gap spacing, submergence depth, and block thickness.

Pontoon and Membrane Breakwater

  • Kee, S.T.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.185-191
    • /
    • 2003
  • A numerical study on the hydrodynamic properties of a floating flexible breakwater consisting of triple vertical porous membrane structures attached to a floating rigid pontoon restrained by moorings is carried out in the context of two-dimensional linear wave-flexible body interaction theory. The tensions in the triple membranes are achieved by hanging a clump weight from its lower ends. The clump weight is also restrained properly by moorings. The dynamic behavior of the breakwater was described through an appropriate Green function, and the fluid multi-domains are incorporated into the boundary integral equation. Numerical results are presented which illustrate the effects of the various wave and structural parameters on the efficiency of the breakwater as a barrier to wave action. It is found that the wave reflection and transmission properties of the structures depends strongly on the membrane length taking major fraction of water column, the magnitude of tensions on membrane achieving by the clump weight, proper mooring types and stiffness, the permeability on the membrane dissipating wave energy.

  • PDF

Computational Study of the Passive Control of the Oblique-Shock-Interaction Flows (경사충격파 간섭유동의 피동제어에 관한 수치해석적 연구)

  • Chang, Sung-Ha;Lee, Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.18-25
    • /
    • 2007
  • Computational study on the passive control of the oblique shock-wave/turbulent boundary-layer interaction utilizing slotted plates over a cavity has been carried out. The numerical boundary layer profile upstream of the interaction follows the compressible turbulent boundary-layer theory reasonably well, and the other results also show good agreements with the experimental observations, such as the wall surface pressures and Schlieren flow visualizations. Further, the effects of various slot configuration including number, location and angle of the slots on the characteristics of the interactions, such as the variation of the total pressures, the boundary-layer characteristics downstream of the interaction and the recirculating mass flux through the slots, are also tested and compared.

Wave Transformation with Wave-Current Interaction in Shallow Water (천해역(淺海域)에서 파(波)와 흐름의 상호작용(相互作用)에 의한 파랑변형(波浪變形))

  • Lee, Jong Kyu;Lee, Jong In
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.77-89
    • /
    • 1991
  • Based on Boussinesq equation, the parabolic approximation equation is used to analyse the propagation of shallow water waves with currents over slowly varying depth. Rip currents (jet-like) occur mainly in shallow waters where the Ursell parameter significatly exceeds the range of application of Stokes wave theory. We employ the nonlinear parabolic approximation equation which is valid for waves of large Ursell parameters and small scale currents. Two types of currents are considered; relatively strong and relatively weak currents. The wave propagating over rip currents on a sloping bottom experiences a shoaling due to the variations of depth and current velocity as well as refraction and diffraction due to the vorticity of currents. Numerical analyses for a nonlinear theory are valid before the breaking point.

  • PDF

A zonal hybrid approach coupling FNPT with OpenFOAM for modelling wave-structure interactions with action of current

  • Li, Qian;Wang, Jinghua;Yan, Shiqiang;Gong, Jiaye;Ma, Qingwei
    • Ocean Systems Engineering
    • /
    • v.8 no.4
    • /
    • pp.381-407
    • /
    • 2018
  • This paper presents a hybrid numerical approach, which combines a two-phase Navier-Stokes model (NS) and the fully nonlinear potential theory (FNPT), for modelling wave-structure interaction. The former governs the computational domain near the structure, where the viscous and turbulent effects are significant, and is solved by OpenFOAM/InterDyMFoam which utilising the finite volume method (FVM) with a Volume of Fluid (VOF) for the phase identification. The latter covers the rest of the domain, where the fluid may be considered as incompressible, inviscid and irrotational, and solved by using the Quasi Arbitrary Lagrangian-Eulerian finite element method (QALE-FEM). These two models are weakly coupled using a zonal (spatially hierarchical) approach. Considering the inconsistence of the solutions at the boundaries between two different sub-domains governed by two fundamentally different models, a relaxation (transitional) zone is introduced, where the velocity, pressure and surface elevations are taken as the weighted summation of the solutions by two models. In order to tackle the challenges associated and maximise the computational efficiency, further developments of the QALE-FEM have been made. These include the derivation of an arbitrary Lagrangian-Eulerian FNPT and application of a robust gradient calculation scheme for estimating the velocity. The present hybrid model is applied to the numerical simulation of a fixed horizontal cylinder subjected to a unidirectional wave with or without following current. The convergence property, the optimisation of the relaxation zone, the accuracy and the computational efficiency are discussed. Although the idea of the weakly coupling using the zonal approach is not new, the present hybrid model is the first one to couple the QALE-FEM with OpenFOAM solver and/or to be applied to numerical simulate the wave-structure interaction with presence of current.

Dynamic response of integrated vehicle-bridge-foundation system under train loads and oblique incident seismic P waves

  • Xinjun Gao;Huijie Wang;Fei Feng;Jianbo Wang
    • Earthquakes and Structures
    • /
    • v.26 no.2
    • /
    • pp.149-162
    • /
    • 2024
  • Aiming at the current research on the dynamic response analysis of the vehicle-bridge system under earthquake, which fails to comprehensively consider the impact of seismic wave incidence angles, terrain effects and soil-structure dynamic interaction on the bridge structure, this paper proposes a multi-point excitation input method that can consider the oblique incidence seismic P Waves based on the viscous-spring artificial boundary theory, and verifies the accuracy and feasibility of the input method. An overall numerical model of vehicle-bridge-soil foundation system in valley terrain during oblique incidence of seismic P-wave is established, and the effects of seismic wave incidence characteristics, terrain effects, soil-structure dynamic interactions, and vehicle speeds on the dynamic response of the bridge are analyzed. The research results indicate that with an increase in P wave incident angle, the vertical dynamic response of the bridge structure decreased while the horizontal dynamic response increased significantly. Traditional design methods which neglect multi-point excitation would lead to an unsafe structure. The dynamic response of the bridge structure significantly increases at the ridge while weakening at the valley. The dynamic response of bridge structures under earthquake action does not always increase with increasing train speed, but reaches a maximum value at a certain speed. Ignoring soil-structure dynamic interaction would reduce the vertical dynamic response of the bridge piers. The research results can provide a theoretical basis for the seismic design of vehicle-bridge systems in complex mountainous terrain under earthquake excitation.

A Study for the Measurement of a fluid Density in a ripe Using Elastic Waves

  • Kim, Jin-Oh;Hwang, Kyo-Kwang;Bau, Haim-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.583-593
    • /
    • 2003
  • The effect of liquid confined in a pipe on elastic waves propagating in the pipe wall was studied theoretically and experimentally. The axisymmetric motion of the wave was modeled with the cylindrical membrane shell theory. The liquid pressure satisfying the axisymmetric wave equation was included in the governing equation as a radial load. The phase speed of the wave propagating in the axial direction was calculated, accounting for the apparent mass of the liquid. Experiments were performed in a pipe equipped with ring-shaped, piezoelectric transducers that were used for transmitting and receiving axisymmetric elastic waves in the pipe wall. The measured wave speeds were compared with the analytical ones. This work demonstrates the feasibility of using pipe waves for the determination of the density and, eventually, the flow rate of the liquid in a pipe.

INTERACTIONS OF A HORIZONTAL FLEXIBLE MEMBRANE WITH OBLIQUE INCIDENT WAVES

  • I.H. Cho;S.W. Hong;Kim, M.H.
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.135-138
    • /
    • 1997
  • The interaction of oblique monochromatic incident waves with a horizontal flexible membrane is investigated in the context of two-dimensional linear hydro-elastic theory. First, analytic diffraction and radiation solutions for a submerged impermeable horizontal membrane are obtained. Second, the theoretical prediction was compared with a series of experiments conducted in a two-dimensional wave tank at Texas A&M University. The measured reflection and transmission coefficients reasonably follow the trend of predicted values. Using the developed computer program, the performance of surface-mounted or submerged horizontal membrane wave barriers is tested with various system parameters and wave characteristics. It is found that the properly designed horizontal flexible membrane can be an effective wave barrier and its efficiency can be further improved using a porous material.

  • PDF