• Title/Summary/Keyword: Wave Converter

Search Result 369, Processing Time 0.025 seconds

Development of Small Wave Power Controller for Ocean Facilities (해양 시설물용 소형 파력발전 전력제어기 개발)

  • Jo, Kwan-Jun;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.835-841
    • /
    • 2011
  • Wave power generation systems operated in the ocean, has been developed as large power and grid power connection systems in general. However, small wave power generation systems offer operational efficiency for the lighted (navigation aids) buoy. They simply adopts a full-wave rectification for charging battery (direct connection method). In this paper, a wave power controller based on a booster converter is developed by considering a characteristic of the wells turbine. Both direct connection and booster converter power controller is designed and tested to compare the characteristics. Experiments demonstrate that the output of the proposed controller has improved the characteristic of output power, when generator output voltage is low.

Dynamic Design of a Mass-Spring Type Translational Wave Energy Converter (파력발전용 병진 질량-스프링식 파력 변환장치의 동적설계)

  • Choi, Young-Hyu;Lee, Chang-Jo;Hong, Dae-Sun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.182-189
    • /
    • 2012
  • This study suggests a dynamic design process for deciding properly design parameters of a mass-spring type Wave Energy Converter (WEC) to achieve sufficient energy conversion from wave to power generator. The WEC mechanism, in this research, consists of a rigid sprung body, a platform, suspension springs and dampers. The rigid sprung body is supported on the platform via springs and dampers and vibrates translationally in the heave direction under wave excitation. At last the resulting heave motion of the sprung body is transmitted to rotating motion of the electric generator by rack and pinion, and transmission gears. For the purpose of vibration analysis, the WEC mechanism has been simply modelled as a mass-spring-damper system under harmonic base excitation. Its maximum displacement transmissibility and steady state response can be determined by using elementary vibration theory if the harmonic ocean wave data were provided. With the vibration analysis results, the suggested dynamic design process of WEC can determine all the design parameters of the WEC mechanism, such as sprung body mass, suspension spring constant, and damping coefficient that can give sufficient relative displacement transmissibility and the associated inertia moment to drive the electric generator and transmission gears.

New Method of SVPWM Implementation Using Single Carrier Wave and Comparision of PI/PR Current Control for the Vienna Converter (비엔나 컨버터를 위한 단일 반송파를 이용한 새로운 방식의 SVPWM 구현과 PI/PR 전류제어기의 비교)

  • Cho, Nam-Su;Ji, Jun-Keun;Lee, Tae-Won;Yun, Bong-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.522-532
    • /
    • 2017
  • In this paper, a new method of SVPWM implementation for 3-Phase 3-Leg 3-Level AC/DC converter known as the Vienna converter is proposed. Also the performances of PI and PR controller used in AC input current controller are compared. To verify the proposed method, PSIM, a power electronics simulation program, is utilized. The performances of the proposed new method and the two existing methods are compared through simulation and experiment. Also PI and PR controller in AC input current controller are compared through 10[kW] Vienna converter system.

Wave Energy Absorption Efficiency of Pneumatic Chamber of OWC Wave Energy Converter (진동수주형 파력발전장치 공기실의 파력에너지 흡수효율)

  • Hong, Key-Yong;Shin, Seung-Ho;Hong, Do-Chun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.3
    • /
    • pp.173-180
    • /
    • 2007
  • Oscillating wave amplitude in a bottom-mounted OWC chamber designed for wave energy converter is investigated by applying characteristic wave conditions in Korean coastal water. The effects of shape parameters of OWC chamber in a view of wave energy absorbing capability are analyzed. Both experimental and numerical approaches are adopted and their results are compared to optimize the shape parameters which can result in a maximum power production under given wave distribution. The experiment was carried out in a wave flume under 2-D assumption of OWC chamber. The numerical scheme employed a hybrid Green integral equation which adopts the Rankine Green function inside chamber to take account of fluctuating air pressure, while it uses the Kelvin Green function in outer domain. Air duct diameter, chamber width, and submerged depths of front skirt and back wall of chamber changes the magnitude and peak frequency of wave absorption significantly.

  • PDF

Parametric Study on Oscillating Water Column Wave Energy Converter Applicable to Breakwater

  • Park, Sewan;Nam, Bo Woo;Kim, Kyong-Hwan;Hong, Keyyong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.66-77
    • /
    • 2018
  • This paper presents a parametric study on an oscillating water column (OWC) wave energy converter (WEC). This OWC has been planned for installation in the breakwaters on isolated islands located away from the mainland. Both a numerical analysis and a model experiment are utilized for determining a proper conceptual design for this purpose. Various design parameters, including the configurations and dimensions, are evaluated through the numerical analysis, which is based on a potential flow theory, and several design concepts are then selected as candidates. The model experiment using a 2D wave flume is conducted to evaluate the effects of the design parameters and compare the performances of the candidates. Based on the overall results of the numerical analysis and model experiment, a conceptual design of the OWC WEC applicable to a breakwater is selected.

Improved Full Wave Mode ZVT PWM DC-DC Converters (개선된 전파형 ZVT PWM DC-DC 컨버터)

  • 김태우;김학성
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.10-16
    • /
    • 2004
  • In this thesis, improved full wave mode ZVT(Zero-Voltage-Transition) PMW DC-DC Converters are presented to maximize the regeneration ratio of resonant energy by only putting an additional diode In series with the auxiliary switch. The operation of the auxiliary switch in a half wave mode makes it possible soft switching operation of all switches including the auxiliary switch whereas it is turned off with hard switching in conventional converter. The increase of the regeneration ratio to resonant energy results in low commutation losses and minimum voltage and current stresses. The operation principles of the improved ZVT PWM DC-DC Converters are theoretically analyzed using the boost converter topology as an example. Both theoretical analysis and experimental results verify the validity of the PWM boost converter topology with the improved full wave mode ZVT PWM converters.

Development of a Multi-Absorbing Wave Energy Converter using Pressure Coupling Principle (압력커플링을 이용한 다수개의 부표를 가진 파력발전기 개발)

  • Do, H.T.;Nguyen, M.T.;Phan, C.B.;Lee, S.Y.;Park, H.G.;Ahn, K.K.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.31-40
    • /
    • 2014
  • This paper proposes a multi absorbing wave energy converter design, in which a hydrostatic transmission is used to transfer wave energy to electric energy. The most important feature of this system is its combination of the pressure coupling principle with the use of a hydraulic accumulator to eliminate the effects of wave power fluctuation; this maintains a constant speed of the hydraulic motor. Tilt motion of a floating buoy was employed as the power take-off mechanism. Furthermore, a PID controller was designed to carry out the speed control of the hydraulic motor. The design offers some advantages such as extending the life of the hydraulic components, increasing the amount of energy harvested, and stabilizing the output speed.

Experimental Study on Hydrodynamic Performance and Wave Power Takeoff for Heaving Wave Energy Converter (수직 진자형 파력 발전 장치의 운동성능 및 파력 추출에 관한 실험적 연구)

  • Kim, Sung-Jae;Koo, WeonCheol;Min, Eun-Hong;Jang, Hoyun;Youn, Donghyup;Lee, Byeongseong
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.361-366
    • /
    • 2016
  • The aim of this study was to experimentally investigate the hydrodynamic performance of a hemispheric wave energy converter (WEC) and its wave power takeoff. The WEC is a heaving body-type point absorber with a hydraulic-pump power take-off (PTO) system. The hydraulic PTO system consists of a hydraulic cylinder, hydraulic motor, and generator, with consideration given to the hydraulic pressure and flow rate. Two body model shapes, including the original hemisphere and a bottom-chopped hemisphere, were considered. The heave RAOs of the two models were evaluated for various body drafts. The effects of the hydraulic PTO system on the RAOs were also investigated.

Investigation on Natural Modes of Substructure of Wave Energy Converter with Overtopping Flow Device (나선암초형 월류파력발전 하부구조물의 모드특성 연구)

  • Kim, Byoung-Wan;Shin, Seung-Ho;Hong, Key-Yong;Choi, You-Su;Seo, Jeong-Oh;Ahn, Ike-Jang
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.323-330
    • /
    • 2010
  • An efficient wave energy converter with new overtopping flow device on which spiral reefs are attached is proposed by Maritime and Ocean Engineering Research Institute in Korea and its candidate substructures such as monopile, tripod and jacket are designed. This study investigates modal characteristics of the substructures by analyzing natural frequencies and mode shapes. Based on the modal analysis results, relative strength, governing modes and some complementary design strategies of each candidate substructure are compared and discussed considering water depth conditions.

Wave Energy Absorption Efficiency of Pneumatic Chamber of OWC Wave Energy Conveter (진동수주형 파력발전장치 공기챔버의 파력에너지 흡수효율)

  • Hong, Key-Yong;Shin, Seung-Ho;Hong, Do-Chun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.621-625
    • /
    • 2007
  • Oscillating wave amplitude in a bottom-mounted owe chamber designed for wave energy converter is investigated by applying characteristic wave conditions in Korean coastal water. The effects of shape parameters of OWC chamber in a view of wave energy absorbing capability are analyzed. Both experimental and numerical approaches are adopted and their results are compared to optimize the shape parameters which can result in a maximum power production under given wave distribution. The experiment was carried out in a wave flume under 2-D assumption of OWC chamber. In numerical scheme, the potential problem inside the chamber is solved by use of the Green integral equation associated with the Rankine Green function, while outer problem with the Kelvin Green function taking account of fluctuating air pressure in the chamber. Air duct diameter, chamber width, and submerged depths of front skirt and back wall of chamber changes the magnitude and peak frequency of wave absorption significantly.

  • PDF