• 제목/요약/키워드: Wave

검색결과 20,667건 처리시간 0.042초

울진해역의 Freak wave 특성과 스펙트럼 근사에 대한 연구 (Study on Freak Wave Characteristics and Approximation of Wave Spectrum in Uljin Sea Area)

  • 유황진;홍사영
    • 한국해양공학회지
    • /
    • 제26권2호
    • /
    • pp.8-13
    • /
    • 2012
  • This paper investigates the statistical properties of waves in the sea area of Uljin, which is located in the East Sea area of Korea. The wave data were measured using AWAC (Acoustic Wave and Current Meter), which was installed at a 16-m water depth from November 2010 to March 2011. The wave data acquisition rate, Hmax, monthly mean Hs, Tz, Tp, and wave direction are summarized. The distributions of Hs and Tz were analyzed using the Hs-Tz scatter diagrams. The measurement wave data were analyzed to investigate freak wave characteristics. By comparing the wave spectrum using the measurement wave data with the wave spectrum obtained by varying the JONSWAP wave spectrum, it was possible to approximate the wave spectrum shape at the Uljin Sea area.

해안구조물 전면의 Stem Wave특성에 관한 연구 (A Study on the Characteristics of the Stem Wave in front of the Coastal Structure)

  • 박효봉;윤한삼;류청로
    • 한국해양공학회지
    • /
    • 제17권5호
    • /
    • pp.25-31
    • /
    • 2003
  • Numerical experiments have been conducted using the nonlinear combined refraction-diffraction model, in order to analyze the generation characteristics of stem wave, which is formed by the interaction between vertical structure and the oblique incident waves. The results of stem wave are discussed through the stem wave height distribution along/normal vertical structure, under the wide range of incident wave conditions-wave heights, periods, depths, and angles. Under the same wave height and period, the larger the incident wave angle, the higher the stem wave heights. According to the results of wave height distribution, in front of vertical structure, the maximum of stern wave heights occurs in the location bordering the vertical wall. Furthermore, the most significant result is that stem waves occur under the incident angles between $0^{\circ}\;and\;30^{\circ}$, and the stem wave height ratio has the maximum value, which is approximately 1.85 times the incident wave height when the incident wave angle becomes $23^{\circ}$.

전자파 영향 평가를 통한 최적의 전파 기지국 위치 결정 방법 (Optimal Wave Source Position Determination Based on Wave Propagation Simulation)

  • 박성헌;박지헌
    • 경영과학
    • /
    • 제18권1호
    • /
    • pp.41-54
    • /
    • 2001
  • In this paper, we proposed a method to determine optimal wave source for mobile telephone communication. The approach is based on wave propagation simulation. Given a wave source we can determine wave propagation effects on every surfaces of wave simulation environment. The effect is evaluated as a cost function while the source’s position x, y, z work as variables for a parameter optimization. Wave propagated 3 dimensional space generates reflected waves whenever it hits boundary surface, it receives multiple waves which are reflected from various boundary surfacers in space. Three algorithms being implemented in this paper are based on a raytracing theory. If we get 3 dimensional geometry input as well as wave sources, we can compute wave propagation effects all over the boundary surfaces. In this paper, we present a new approach to compute wave propagation. First approach is tracing wave from a source. Source is modeled as a sphere casting vectors into various directions. This approach has limit in computing necessary wave propagation effects on all terrain surfaces. The second approach proposed is tracing wave backwards : tracing from a wave receiver to a wave source. For this approach we need to allocate a wave receiver on every terrain surfaces modeled, which requires enormous amount of computing time. But the second approach is useful for indoor wave propagation simulation. The last approach proposed in this paper is tracing sound by geometric computation. We allow direct, 1-relfe tion, and 2-reflection propagation. This approach allow us to save in computation time while achieving reasonable results. but due to the reflection limitaion, this approach works best in outdoor environment.

  • PDF

관출구로부터 방출하는 펄스파에 대한 수치계산과 해석적 연구 (Computational and Analytical Studies on the Impulse Wave Discharged from the Exit of a Pipe)

  • 이동훈;김현섭;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.432-437
    • /
    • 2001
  • A computational work of the impulse wave which is discharged from the open end of a pipe is compared to the Lighthill's aeroacoustics theory. The second-order total variation diminishing(TVD) scheme is employed to solve the axisymmetric, compressible, unsteady Euler equations. The relationship between the initial compressure wave form and the resulting impulse wave is characterized in terms of the peak pressure. The overpressure, pressure gradient and wavelength of the initial compression wave are changed to investigate the influence of the initial compressure wave form on the peak pressure of impulse wave. The results obtained show that for the initial compression wave of a large wavelength and small pressure gradient the peak pressure of the impulse wave depends upon the wavelength and pressure gradient of compression wave, but for the initial compression wave of a short wavelength and large pressure gradient the peak pressure of the impulse wave is almost constant regardless of the wavelength and pressure gradient of compression wave. The peak pressure of the impulse wave is increased with an increase in the overpressure of the initial compression wave. The results from the numerical analysis are well compared to the results from the aeroacoutics theory with a good agreement.

  • PDF

관출구로부터 방출하는 펄스파 특성에 관한 연구 (A Study on the Characteristics of the Impulse Wave Discharged from the Exit of a Pipe)

  • 이동훈;김희동;이명호;박종호
    • 한국소음진동공학회논문집
    • /
    • 제12권1호
    • /
    • pp.48-56
    • /
    • 2002
  • A computational work of the impulse wave which is discharged from the open end of a pipe is compared to the Lighthill\`s aeroacoustics theory. The second-order total variation diminishing(TVD) scheme is employed to solve the axisymmetric, compressible, unsteady Euler equations. The relationship between the initial compressure wave form and the resulting impulse wave is characterized in terms of the peak pressure. The overpressure, pressure gradient and wavelength of the initial compression wave are changed to investigate the influence of the initial compressure wave form on the peak pressure of impulse wave. The results obtained show that for the initial compression wave of a large wavelength and small pressure gradient the peak pressure of the impulse wave depends upon the wavelength and pressure gradient of compression wave, but for the initial compression wave of a short wavelength and large pressure gradient the peak pressure of the impulse wave is almost constant regardless of the wavelength and pressure gradient of compression wave. The peak pressure of the impulse wave is increased with an increase in the overpressure of the initial compression wave. The results from the numerical ana1ysis are well compared to the results from the aeroacoutics theory with a food agreement.

주의·집중훈련 프로그램의 두 가지 과제수행에 따른 뇌파 변화 (Changes in EEG According to Attention and Concentration Training Programs with Performed Difference Tasks)

  • 채정병
    • PNF and Movement
    • /
    • 제12권2호
    • /
    • pp.97-106
    • /
    • 2014
  • Purpose: The purpose of this study was to investigate changes in EEG through attention. Concentration training and performing tasks are important factors in the improvement of motor learning ability. Methods: In the experiment, 22 healthy people were divided into two groups: the trail making test (TMT) group and the computerized neurocognitive function test (CNT) group. A one-way Neuro Harmony M test to see whether there was a significant difference among the groups. Results: The TMT group showed a significant increase in ${\alpha}$ wave, ${\alpha}$ wave sequence, and ${\beta}$ wave sequence; however, there were no significant differences in SMR wave, SMR wave sequence, and ${\beta}$ wave. The CNT group showed increases in ${\alpha}$ wave, ${\alpha}$ wave sequence, SMR wave, SMR wave sequence, and ${\beta}$ wave sequence; however, there was no significant difference in ${\beta}$ wave. In EEGs before and after two performance tasks were changed, there were significant differences in ${\beta}$ wave, SMR wave, SMR wave sequence; however, there were no significant differences in ${\alpha}$ wave sequence, ${\beta}$ wave, and ${\beta}$ wave sequence. Conclusion: Attention training and concentration training offer feedback and repetition for constant stimulus and response. Moreover, attention training and concentration training can contribute to new studies and motivation by developing fast sensory and motor skills through acceptable visual and auditory stimulation.

New procedure for determining equivalent deep-water wave height and design wave heights under irregular wave conditions

  • Kang, Haneul;Chun, Insik;Oh, Byungcheol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.168-177
    • /
    • 2020
  • Many coastal engineering designs utilize empirical formulas containing the Equivalent Deep-water Wave Height (EDWH), which is normally given a priori. However, no studies have explicitly discussed a method for determining the EDWH and the resulting design wave heights (DEWH) under irregular wave conditions. Unfortunately, it has been the case in many design practices that the EDWH is incorrectly estimated by dividing the Shallow-water Wave Height (SWH) at the structural position with its corresponding shoaling coefficient of regular wave. The present study reexamines the relationship between the Shallow-water Wave Height (SWH) at the structural position and its corresponding EDWH. Then, a new procedure is proposed to facilitate the correct estimation of EDWH. In this procedure, the EDWH and DEWH are determined differently according to the wave propagation model used to estimate the SWH. For this, Goda's original method for nonlinear irregular wave deformation is extended to produce values for linear shoaling. Finally, exemplary calculations are performed to assess the possible errors caused by a misuse of the wave height calculation procedure. The relative errors with respect to the correct values could exceed 20%, potentially leading to a significant under-design of coastal or harbor structures in some cases.

반 무한 복합체의 Rayleigh 표면파에 대한 이방성비의 영향 (Effect of Anisotropic Ratio for Rayleigh Wave of a Half-Infinite Composite Material)

  • 백운철;황재석;송용태
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.502-509
    • /
    • 2001
  • In this paper, when stress waves are propagated along the reinforced direction of the composite, the characteristic equation of Rayleigh wave is derived. The relationships between velocities of stress waves and Rayleigh wave are studied for anisotropic ratios(E(sub)11/E(sub)12 or E(sub)22/E(sub)11). The increments of anisotropic ratios is made by using known material properties and being constant of basic properties. When the anisotropic ratios are increased, Rayleigh wave velocities to the shear wave velocities are almost equal to 1 with any anisotropic ratios. Rayleigh wave velocities to the longitudinal wave velocities and Shear wave velocities ratio to the longitudinal wave velocities are almost identical each other, they are between 0.12 and 0.21. When the anisotropic ration is very high, that is, E(sub)11/E(sub)22=46.88, Rayleigh wave velocities and the shear wave velocities are almost constant with Poissons ratio, longitudinal wave velocities are very slowly increased with the increments of Poissons ratios. When E(sub)11(elastic modulus of the reinforced direction)and ν(sub)12 are constant, Rayleigh wave velocities and the shear wave velocities are steeply decreased with the increments of anisotropic ratios and the velocities of longitudinal wave are almost constant with them. When E(sub)22(elastic modulus of the normal direction to the fiber) and ν(sub)12 are constant, Rayeigh wave velocities is slowly increased with the increments of anisotropic ratios, the shear wave velocities are almost constant with them, the longitudinal wave velocities are steeply increased with them.

생체 기에 대한 피동공명적인 연구 (Study on the wave resonance-stimultion and receptionfor the BIO-KI)

  • 류경호;김경철;이용태
    • 동의생리병리학회지
    • /
    • 제17권2호
    • /
    • pp.263-274
    • /
    • 2003
  • The present condition of study on the wave-resonance for the bio-KI is observed. And the probroms of reception attendent on the stimulation of wave is observed centering around the sensory organ. The results is as follows: In the wave-resonant stand point, the tendency of studying on KI is showed in the several field all over the world. Because it is originated radionics, the wave-resonant tools of MRA insistenting minute-magnetism-resonance-apparatus need the more severe data in the side of electric circuit. The wave resonance apparatus according to the frequency occurance transmits low-frequency's vibration ratio to the electric stimulating aspect. The wave-water is considered on the application of wave-resonance transcription on the water, and needs the comprehension of torsion-field level. The wave-stimulation of the bio-KI and the reception of the sensory-organ is observed the connection of the sensory-organ and it's corresponding wave. The informations recorded in the wave are distinguished patternly. And the several shaping waves transmit the informations each other through the resonnance. The wave theory is explained the LEE(理) as the wave-pattern and the KI(氣) as the revelation of the patterned-wave in the LEE-KI theory(理氣論), moreover the SHIN(神) as the information of the wave-pattern and the KI as the energy of the wave and the JEUNG(精) as the material of the wave in the JEUNG-KI-SHIN theory(精氣神論). In this point, the study on the wave-resonance of bio-KI is thought that it is significantly in the study method for oriental medicine. The sum of the wave makes the moving body and forms the universe. It means that the several wave patterns gather and form new field. The pattern is a kind of the information and the information is not materially. The information of wave-pattern is the arrangement and the combination of the material source.

Adaptive Re-reflecting Wave Control in Plunger Type Wave Maker System: Theory

  • Park, Jae-Woong;Lee, Jin-Ho;Park, Gun-Il;Kim, Ki-Jung
    • Journal of Ship and Ocean Technology
    • /
    • 제6권4호
    • /
    • pp.13-18
    • /
    • 2002
  • Active control has been partly applied to suppress the re-reflecting waves in wave basin with plunger-type wave maker to obtain desirable waves. This limitation comes from the non-confirmable theoretical background to the control algorithm. This paper proposes control logic to overcome this drawback, based on the impulse response function for propagating waves between control input and the wave height. The performances have been verified as reasonable in practical application by comparing with the propagating wave components in numerical wave basin, using wave decomposition method. Moreover, the control logic can also give useful wave-absorbing performance after cessation of wave generation.