• Title/Summary/Keyword: Wave

Search Result 20,749, Processing Time 0.044 seconds

Comparing Physical and Thermal Environments Using UAV Imagery and ENVI-met (UAV 영상과 ENVI-met 활용 물리적 환경과 열적 환경 비교)

  • Seounghyeon KIM;Kyunghun PARK;Bonggeun SONG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.145-160
    • /
    • 2023
  • The purpose of this study was to compare and analyze diurnal thermal environments using Unmanned Aerial Vehicles(UAV)-derived physical parameters(NDVI, SVF) and ENVI-met modeling. The research findings revealed significant correlations, with a significance level of 1%, between UAV-derived NDVI, SVF, and thermal environment elements such as S↑, S↓, L↓, L↑, Land Surface Temperature(LST), and Tmrt. In particular, NDVI showed a strong negative correlation with S↑, reaching a minimum of -0.52** at 12:00, and exhibited a positive correlation of 0.53** or higher with L↓ at all times. A significant negative correlation of -0.61** with LST was observed at 13:00, suggesting the high relevance of NDVI to long-wavelength radiation. Regarding SVF, the results showed a strong relationship with long-wave radiative flux, depending on the SVF range. These research findings offer an integrated approach to evaluating thermal comfort and microclimates in urban areas. Furthermore, they can be applied to understand the impact of urban design and landscape characteristics on pedestrian thermal comfort.

Neural Network-Based Prediction of Dynamic Properties (인공신경망을 활용한 동적 물성치 산정 연구)

  • Min, Dae-Hong;Kim, YoungSeok;Kim, Sewon;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.37-46
    • /
    • 2023
  • Dynamic soil properties are essential factors for predicting the detailed behavior of the ground. However, there are limitations to gathering soil samples and performing additional experiments. In this study, we used an artificial neural network (ANN) to predict dynamic soil properties based on static soil properties. The selected static soil properties were soil cohesion, internal friction angle, porosity, specific gravity, and uniaxial compressive strength, whereas the compressional and shear wave velocities were determined for the dynamic soil properties. The Levenberg-Marquardt and Bayesian regularization methods were used to enhance the reliability of the ANN results, and the reliability associated with each optimization method was compared. The accuracy of the ANN model was represented by the coefficient of determination, which was greater than 0.9 in the training and testing phases, indicating that the proposed ANN model exhibits high reliability. Further, the reliability of the output values was verified with new input data, and the results showed high accuracy.

Experimental Analysis to Derive Optimal Wavelength in Underwater Optical Communication Environment (수중 광통신 환경에서 최적 파장을 도출하기 위한 실험적 해석)

  • Dong-Hyun Kwak;Seung-il Jeon;Jung-rak Choi;Min-Seok Han
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.478-488
    • /
    • 2023
  • This paper investigates the naval application of laser communication as a potential replacement for traditional acoustic wave communication in underwater environments. We developed a laser transceiver using Arduino and MATLAB, conducting a water tank experiment to validate communication feasibility across diverse underwater conditions. In the first experiment, when transmitting data through a laser, the desired message was converted into data and transmitted, received, and confirmed to be converted into the correct message. In the second experiment, the operation of communication in underwater situations was confirmed, and in the third experiment, the intensity of light was measured using the CDS illuminance sensor module and the limits of laser communication were measured and confirmed in various underwater situations. Additionally, MATLAB code was employed to gather data on salinity, water temperature, and water depth for calculating turbidity. Optimal wavelength values (532nm, 633nm, 785nm, 1064nm) corresponding to calculated turbidity levels (5, 20, 55, 180) were determined and presented. The study then focuses on analyzing potential applications in naval tactical communication, remote sensing, and underwater drone control. Finally, we propose measures for overcoming current technological limitations and enhancing performance.

Development of a UAV-Based Urban Thermal Comfort Assessment Method (UAV 기반 도시 공간의 열 쾌적성 평가기법 개발)

  • Seounghyeon Kim;Bonggeun Song;Kyunghun Park
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.2
    • /
    • pp.61-77
    • /
    • 2024
  • The purpose of this study was to develop a method for rapidly diagnosing urban thermal comfort using Unmanned Aerial Vehicle (UAV) based data. The research was conducted at Changwon National University's College of Engineering site and Yongji Park, both located in Changwon, Gyeongsangnam-do. Baseline data were collected using field measurements and UAVs. Specifically, the study calculated field measurement-based thermal comfort indices PET and UTCI, and used UAVs to create and analyze vegetation index (NDVI), sky view factor (SVF), and land surface temperature (LST) images. The results showed that UAV-predicted PET and UTCI had high correlations of 0.662 and 0.721, respectively, within a 1% significance level. The explanatory power of the prediction model was 43.8% for PET and 52.6% for UTCI, with RMSE values of 6.32℃ for PET and 3.16℃ for UTCI, indicating that UTCI is more suitable for UAV-based thermal comfort evaluation. The developed method offers significant time-saving advantages over traditional approaches and can be utilized for real-time urban thermal comfort assessment and mitigation planning

Application of Time Domain Reflectometry to Estimate Curing Process of Cementitious Grout (시계열반사계를 이용한 시멘트계열 지반보강재의 양생과정 평가)

  • Jun, Minu;Cho, Hyunmuk;Lee, Eun Sang;Hong, Won-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.85-91
    • /
    • 2024
  • To realize stable use of ground treated with cementitious materials, the curing process must be evaluated. In this study, a time domain reflectometry (TDR) measurement system was employed to evaluate the curing process of cementitious grout based on the electromagnetic property. A coated probe was manufactured to prevent electrical connection between the electrodes by the electrically conductive cementitious grout, and a calibration process was performed to estimate the actual relative permittivity using the coated probe. To assess the curing process of cementitious grout using the TDR measurement system, cementitious grout with added retarder was prepared with a water-to-cement ratio of 45%. A preliminary measurement was conducted immediately after pouring the cementitious grout into the mold to test the applicability of the coated probe, and TDR signals and relative permittivity were measured at 3~288 hours of curing time. The experimental results demonstrate that the relative permittivity of the cementitious grout immediately after pouring was greater than 100, decreased rapidly over time, and converged to approximately 13.8 at 144 hours, which is considered the fully cured time. This findings of this study demonstrate that the TDR measurement system with a coated probe is applicable to electrically conductive materials. In addition, the TDR measurement system can be used effectively to monitor the curing process of cementitious grout based on electromagnetic properties.

Progressive Evaluation of Concrete Deterioration Caused by Chloride-Induced Steel Corrosion Using Impact-Echo Testing (충격 반향 신호 모니터링을 통한 철근 부식 진전에 따른 콘크리트 상태 평가)

  • Rizky Pitajeng;Julfikhsan Ahmad Mukhti;Seong-Hoon Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.37-46
    • /
    • 2024
  • This study investigates the evolution of concrete damage due to chloride-induced steel corrosion through Impact-echo (IE) testing. Three reinforced concrete specimens, each measuring 1500 mm in length, 400 mm in width, and 200 mm in thickness, were fabricated using three concrete mixture proportions of blended cement types: ordinary Portland cement, ground granulated blast-furnace slag and fly ash. Steel corrosion in the concrete was accelerated by impressing a 0.5 A current following a 35-day cycle of wet-and-dry saturation in a 3% NaCl solution. Initial IE data collected during the saturation phase showed no significant changes, indicating that moisture had a minimal impact on IE signals and highlighting the slow progress of corrosion under natural conditions. Post-application of current, however, there was a noticeable decline in both IE peak frequency and the P-wave velocity in the concrete as the duration of the impressed current increased. Remarkably, progressive monitoring of IE proves highly effective in capturing the critical features of steel-corrosion induced concrete deterioration, such as the onset of internal damages and the rate of damage propagation. These results demonstrate the potential of progressive IE data monitoring to enhance the reliability of diagnosing and prognosticating the evolution of concrete damage in marine environment.

Tidal Characteristics Change in the Asan Bay due to the Hwaong (Namyang Bay) Tidal Barrier (화옹 (남양만) 방조제에 따른 아산만의 조석변화)

  • Park, Moon-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.4
    • /
    • pp.320-324
    • /
    • 2008
  • In order to identify the change of tidal characteristics on average in the Asan Bay due to the construction of the Hwaong (Namyang Bay) tidal barrier (HTB), the tide data at Pyongtack (PT) and Anheung (AH) for the periods from 1993 to 2006 were analyzed using the harmonic analysis method, and major and shallow water tidal constituents were compared. The semidiurnal tidal amplitudes at PT increased while those at AH decreased after the tidal barrier construction. In particular, the amplitudes at PT increased abruptly during the period of $2002{\sim}2003$ when HTB was completed. On the other hand, the amplitudes of the diurnal tides at PT and AH showed minimal change. This suggests that the tidal characteristics change in the Asan Bay may be related to the construction of HTB. The cause of this change is different from either blocking the tidal wave propagation by the Keum River tidal barrier or removing 'choking effect' by the Yeongsan River tidal barrier. The $M_4/M_2$ ratio increased and their phase difference decreased after the completion of HTB. Accordingly, these changes may result in increase of tidal range, decrease of the flood duration and increase of the flood current velocity, inducing more sediments into the Asan Bay.

State-Space Equation Model for Motion Analysis of Floating Structures Using System-Identification Methods (부유식 구조체 운동 해석을 위한 시스템 식별 방법을 이용한 상태공간방정식 모델)

  • Jun-Sik Seong;Wonsuk Park
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.85-93
    • /
    • 2024
  • In this paper, we propose a method for establishing a state-space equation model for the motion analysis of floating structures subjected to wave loads, by applying system-identification techniques. Traditionally, the motion of floating structures has been analyzed in the time domain by integrating the Cummins equation over time, which utilizes a convolution integral term to account for the effects of the retardation function. State-space equation models have been studied as a way to efficiently solve floating-motion equations in the time domain. The proposed approach outlines a procedure to derive the target transfer function for the load-displacement input/output relationship in the frequency domain and subsequently determine the state-space equation that closely approximates it. To obtain the state-space equation, the method employs the N4SID system-identification method and an optimization approach that treats the coefficients of the numerator and denominator polynomials as design variables. To illustrate the effectiveness of the proposed method, we applied it to the analysis of a single-degree-of-freedom model and the motion of a six-degree-of-freedom barge. Our findings demonstrate that the presented state-space equation model aligns well with the existing analysis results in both the frequency and time domains. Notably, the method ensures computational accuracy in the time-domain analysis while significantly reducing the calculation time.

On the Taoist Interpretation of Addiction (중독(中毒) 현상의 도가철학적 해석)

  • Kim Baeg-hee
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.47
    • /
    • pp.39-63
    • /
    • 2023
  • Modern medical science tends to categorize addiction as a kind of disease, but a Taoist world-view would not consider addiction to be a disease. Taoists do not have a concept of addiction as an eternal substance. Within the Taoist world-view, human beings are meant to live in harmony with the transformative cycles of nature. Human beings achieve self-realization through balancing themselves with nature. This is what is meant by Self-Realization in Harmony with Nature. There is no disease known as addiction when one's life is in harmony with nature. There are two main principles in the Taoist medical worldview. First, is the theory of correspondences. This theory of correspondences is the foundational to Taoism's value-neutral world-view wherein humans are seen as working together with Heaven and Earth in correlative relationships to create harmonious societies. Second, is the principle of harmony and balance in the Universe. One creature can be in harmony with other creatures and learn to appreciate the interconnectedness of all living beings. Survival of the forest is vital to the survival of natural harmony, balance, morality, and environment. The vitality of the human body depends on the movement of Qi energy. According to the principles of Korean traditional medicine, all human problems stem from the mind. There is no madness, no illness, no tempting fate, and even no death outside of what stems from the mind. Within the human body, there are two principles behind energy systems: harmony and balance. When human beings achieve the state of homeostasis, they obtain Qi flows which are associated with the various organs. In doing so, they can always maintain a healthy state of life in accordance with the cosmic rhythm. Taoist philosophy contains advice that prevents addiction. Empty your mind of all thought. Let your heart be peaceful. Finally, all worries are washed away by the cosmic wave.

Relationship between Olivine Fabrics and Seismic Anisotropy in the Yugu Peridotites, Gyeonggi Massif, South Korea (경기육괴 유구 페리도타이트의 감람석 미구조와 지진파 비등방성의 관계)

  • Munjae Park
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.253-261
    • /
    • 2024
  • Olivine, a major mineral in the upper mantle with strong intrinsic elastic anisotropy, plays a crucial role in seismic anisotropy in the mantle, primarily through its lattice preferred orientation (LPO). Despite this, the influence of the microstructure of mylonitic rocks on seismic anisotropy remains inadequately understood. Notably, there is a current research gap concerning seismic anisotropy directly inferred from mylonitic peridotite massifs in Korea. In this study, we introduce the deformation microstructure and LPO of olivine in the mantle shear zone. We calculate the characteristics of seismic anisotropy based on the degree of deformation (proto-mylonite, mylonite, ultra-mylonite) and establish correlations between these characteristics. Our findings reveal that the seismic anisotropy resulting from the olivine LPO in the ultra-mylonitic rock appears to be the weakest, whereas the seismic anisotropy resulting from the olivine LPO in the proto-mylonitic rock appears to be the strongest. The results demonstrate a gradual decrease in seismic anisotropy as the fabric strength (J-index) of olivine LPO diminishes, irrespective of the specific pattern of olivine's LPO. Moreover, all samples exhibit a polarization direction of the fast S-wave aligned subparallel to the lineation. This suggests that seismic anisotropy originating from olivine in mylonitic peridotites is primarily influenced by fabric strength rather than LPO type. Considering these distinctive characteristics of seismic anisotropy is expected to facilitate comparisons and interpretations of the internal mantle structure and seismic data in the Yugu area, Gyeonggi Massif.