DOI QR코드

DOI QR Code

Relationship between Olivine Fabrics and Seismic Anisotropy in the Yugu Peridotites, Gyeonggi Massif, South Korea

경기육괴 유구 페리도타이트의 감람석 미구조와 지진파 비등방성의 관계

  • Munjae Park (Department of Earth and Environmental Sciences, Chungbuk National University)
  • 박문재 (충북대학교 지구환경과학과)
  • Received : 2024.02.19
  • Accepted : 2024.03.05
  • Published : 2024.04.29

Abstract

Olivine, a major mineral in the upper mantle with strong intrinsic elastic anisotropy, plays a crucial role in seismic anisotropy in the mantle, primarily through its lattice preferred orientation (LPO). Despite this, the influence of the microstructure of mylonitic rocks on seismic anisotropy remains inadequately understood. Notably, there is a current research gap concerning seismic anisotropy directly inferred from mylonitic peridotite massifs in Korea. In this study, we introduce the deformation microstructure and LPO of olivine in the mantle shear zone. We calculate the characteristics of seismic anisotropy based on the degree of deformation (proto-mylonite, mylonite, ultra-mylonite) and establish correlations between these characteristics. Our findings reveal that the seismic anisotropy resulting from the olivine LPO in the ultra-mylonitic rock appears to be the weakest, whereas the seismic anisotropy resulting from the olivine LPO in the proto-mylonitic rock appears to be the strongest. The results demonstrate a gradual decrease in seismic anisotropy as the fabric strength (J-index) of olivine LPO diminishes, irrespective of the specific pattern of olivine's LPO. Moreover, all samples exhibit a polarization direction of the fast S-wave aligned subparallel to the lineation. This suggests that seismic anisotropy originating from olivine in mylonitic peridotites is primarily influenced by fabric strength rather than LPO type. Considering these distinctive characteristics of seismic anisotropy is expected to facilitate comparisons and interpretations of the internal mantle structure and seismic data in the Yugu area, Gyeonggi Massif.

감람석은 강한 고유 탄성 이방성을 가진 상부 맨틀의 주요 광물이기 때문에 맨틀에서 발생하는 대부분의 지진파 비등방성은 감람석의 격자선호방향에서 직접적으로 기인한다. 그러나 압쇄암의 미구조가 지진파 비등방성에 미치는 영향에 대한 이해는 아직 잘 알려져 있지 않으며, 국내의 압쇄암화된 페리도타이트 암괴에서 직접적으로 추론한 지진파 비등방성 연구는 전무하다. 따라서 본 연구에서는 맨틀 전단대 내의 감람석의 변형 미구조와 격자선호방향을 소개하고, 이들의 변형 정도(원압쇄암, 압쇄암, 초압쇄암)와 격자선호방향 결과에 따른 지진파 비등방성의 특성을 계산하고 이들의 상관관계를 파악해보았다. 그 결과, 초압쇄암의 감람석 격자선호방향에서 기인한 지진파 비등방성은 가장 약하게 나타났고, 원압쇄암의 감람석 격자선호방향에서 기인한 지진파 비등방성은 가장 강하게 나타났다. 이러한 결과는 감람석의 격자선호방향의 패턴과는 관계없이 격자선호방향의 배열 강도(J-index)가 감소함에 따라 지진파 비등방성이 점차 감소하는 것으로 나타났다. 또한, 모든 샘플에서 공통적으로 빠른 S파의 편파방향이 선구조와 아평행하게 배열하는 것을 보여 주었다. 따라서 유구 페리도타이트 내 감람석에서 기인한 지진파 비등방성은 격자선호방향의 타입보다 배열 강도에 의해 지배된다고 설명할 수 있다. 이러한 서로 대조되는 지진파 비등방성의 특성을 잘 고려하면, 경기육괴 유구 지역의 맨틀의 내부 구조와 지진파 자료를 비교하고 해석하는데 도움을 줄 수 있을 것으로 기대한다.

Keywords

Acknowledgement

이 논문은 한국연구재단 우수신진연구과제(No. 2022R1C1C1005243)의 지원과 2021년도 충북대학교 학술연구지원사업의 연구비 지원으로 연구되었습니다. 논문의 세심한 검토와 질적 향상을 위해 유익한 제안을 주신 두 익명의 심사위원과 편집위원께 감사를 표합니다.

References

  1. Abramson, E.H., Brown, J.M., Slutsky, L.J. and Zaug, J. (1997) The elastic constants of San Carlos olivine to 17 GPa. Journal of Geophysical Research, v.102, p.12253-12263. https://doi.org/10.1029/97JB00682
  2. Arai, S., Tamura, A., Ishimaru, S., Kadoshima, K., Lee, Y.I. and Hisada, K. (2008) Petrology of the Yugu peridotites in the Gyeonggi Massif, South Korea: Implications for its origin and hydration process. Island Arc., v.17(4), p.485-501. https://doi.org/10.1111/j.1440-1738.2008.00633.x
  3. Bachmann, F., Hielscher, R. and Schaeben, H. (2010) Texture analysis with MTEX-free and open source software toolbox. Solid State Phenomena, v.160, p.63-68. https://doi.org/10.4028/www.scientific.net/SSP.160.63
  4. Bunge, H. (1982) Texture Analysis in Materials Science: Mathematical Models. Butteworths, London, 593 p.
  5. Drury, M.R., Vissers, R.L.M., Van der Wal, D. and Hoogerduijn Strating, E.H. (1991) Shear localisation in upper mantle peridotites. Pure and Applied Geophysics, v.137(4), p.439-460. https://doi.org/10.1007/BF00879044
  6. Handy, M.R. (1989) Deformation regimes and the rheological evolution of fault zones in the lithosphere: the effects of pressure, temperature, grainsize and time. Tectonophysics, v.163(1-2), p.119-152. https://doi.org/10.1016/0040-1951(89)90122-4
  7. Hess, H.H. (1964) Seismic Anisotropy of the Uppermost Mantle under Oceans. Nature, v.203(4945), p.629-631. https://doi.org/10.1038/203629a0
  8. Jung, H. and Karato, S. (2001) Water-induced fabric transitions in olivine. Science, v.293(5534), p.1460-1463. https://doi.org/10.1126/science.1062235
  9. Jung, H., Katayama, I., Jiang, Z., Hiraga, I. and Karato, S. (2006) Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics, v.421(1-2), p.1-22. https://doi.org/10.1016/j.tecto.2006.02.011
  10. Jung, S., Jung, H. and Austrheim, H. (2014) Characterization of olivine fabrics and mylonite in the presence of fluid and implications for seismic anisotropy and shear localization. Earth, Planets and Space, v.66(1), p.1-21. https://doi.org/10.1186/1880-5981-66-46
  11. Karato, S., Jung, H., Katayama, I. and Skemer, P. (2008) Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies. Annual Review of Earth and Planetary Sciences, v.36, p.59-95. https://doi.org/10.1146/annurev.earth.36.031207.124120
  12. Katayama, I., Jung, H. and Karato, S.I. (2004) New type of olivine fabric from deformation experiments at modest water content and low stress. Geology, v.32(12), p.1045-1048. https://doi.org/10.1130/g20805.1
  13. Katayama, I. and Karato, S. (2006) Effect of temperature on the Bto C-type olivine fabric transition and implication for flow pattern in subduction zones. Physics of the Earth and Planetary Interiors, v.157(1-2), p.33-45. https://doi.org/10.1016/j.pepi.2006.03.005
  14. Kee, W.-S., Kim, S.W., Kwon, S., Santosh, M., Ko, K. and Jeong, Y.-J. (2019) Early Neoproterozoic (ca. 913-895 Ma) arc magmatism along the central-western Korean Peninsula: Implications for the amalgamation of Rodinia supercontinent. Precambrian Research, v.335, p.105498. https://doi.org/10.1016/j.precamres.2019.105498
  15. Kim, S.W., Cho, D.-L., Lee, S.-B., Kwon, S., Park, S.-I., Santosh, M. and Kee, W.-S. (2018) Mesoproterozoic magmatic suites from the central-western Korean Peninsula: Imprints of Columbia disruption in East Asia. Precambrian Research, v.306, p.155-173. https://doi.org/10.1016/j.precamres.2017.12.038
  16. Kim, S.W., Kwon, S., Santosh, M., Cho, D.-L., Kee, W.-S., Lee, S.-B. and Jeong, Y.-J. (2019) Detrital zircon U-Pb and Hf isotope characteristics of the Early Neoproterozoic successions in the central-western Korean Peninsula: Implication for the Precambrian tectonic history of East Asia. Precambrian Research, v.322, p.24-41. https://doi.org/10.1016/j.precamres.2018.12.008
  17. Kim, S.W., Oh, C.W., Williams, I.S., Rubatto, D., Ryu, I.C., Rajesh, V.J., Kim, C.B., et al. (2006) Phanerozoic high-pressure eclogite and intermediate-pressure granulite facies metamorphism in the Gyeonggi Massif, South Korea: Implications for the eastward extension of the Dabie-Sulu continental collision zone. Lithos, v.92(3-4), p.357-377. https://doi.org/10.1016/j.lithos.2006.03.050
  18. Kwon, S., Sajeev, K., Mitra, G., Park, Y., Kim, S.W. and Ryu, I.C. (2009) Evidence for Permo-Triassic collision in Far East Asia: The Korean collisional orogen. Earth and Planetary Science Letters, v.279(3-4), p.340-349. https://doi.org/10.1016/j.epsl.2009.01.016
  19. Lee, S.R., Cho, M., Hwang, J.H., Lee, B.-J., Kim, Y.-B. and Kim, J.C. (2003) Crustal evolution of the Gyeonggi massif, South Korea: Nd isotopic evidence and implications for continental growths of East Asia. Precambrian Research, v.121(1-2), p.25-34. https://doi.org/10.1016/S0301-9268(02)00196-1
  20. Mainprice, D. (1990) A FORTRAN program to calculate seismic anisotropy from the lattice preferred orientation of minerals. Computers and Geosciences, v.16, p.385-393. https://doi.org/10.1016/0098-3004(90)90072-2
  21. Mainprice, D. (2007) Seismic anisotropy of the deep Earth from a mineral and rock physics perspective. Treatese of Geophysics, vol. 2, p.437-491. https://doi.org/10.1016/B978-044452748-6.00045-6
  22. Nicolas, A. and Christensen, N.I. (1987) Formation of anisotropy in upper mantle peridotites - A review. Composition, Structure and Dynamics of the Lithosphere-Asthenosphere System, v.16, p.111-123. https://doi.org/10.1029/GD016p0111
  23. Oh, C.W., Kim, S.W., Choi, S.G., Zhai, M.G., Guo, J.H. and Krishnan, S. (2005) First finding of eclogite facies metamorphic event in South Korea and its correlation with the Dabie-Sulu collision belt in China. Journal of Geology, v.113(2), p.226-232. https://doi.org/10.1086/427671
  24. Park, M. and Jung, H. (2017) Microstructural evolution of the Yugu peridotites in the Gyeonggi Massif, Korea: Implications for olivine fabric transition in mantle shear zones. Tectonophysics, v.709, p.55-68. https://doi.org/10.1016/j.tecto.2017.04.017
  25. Precigout, J., Gueydan, F., Gapais, D., Garrido, C.J. and Essaifi, A. (2007) Strain localisation in the subcontinental mantle - a ductile alternative to the brittle mantle. Tectonophysics, v.445(3-4), p.318-336. https://doi.org/10.1016/j.tecto.2007.09.002
  26. Savage, M.K. (1999) Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Reviews of Geophysics, v.37(1), p.65-106. https://doi.org/10.1029/98RG02075
  27. Seo, J., Oh, C.W., Choi, S.G. and Rajesh, V.J. (2013) Two ultramafic rock types in the Hongseong area, South Korea: Tectonic significance for northeast Asia. Lithos, v.175-176(0), p.30-39. https://doi.org/10.1016/j.lithos.2013.04.014
  28. Shao, Y., Prior, D.J., Scott, J.M., Kidder, S.B. and Negrini, M. (2022) Alpine Fault-Related Microstructures and Anisotropy of the Mantle Beneath the Southern Alps, New Zealand. Journal of Geophysical Research: Solid Earth, v.127(11), p.e2022JB024950. https://doi.org/10.1029/2022JB024950
  29. Skemer, P., Warren, J.M., Kelemen, P.B. and hirth, G. (2010) Microstructural and Rheological Evolution of a Mantle Shear Zone. Journal of Petrology, v.51(1-2), p.43-53. https://doi.org/10.1093/petrology/egp057
  30. Um, S.H. and Lee, M.S. (1963) Explanatory text of the geological map of Tae Hung sheet (1:50,000). Geological survey of Korea.