• 제목/요약/키워드: Watersheds

검색결과 885건 처리시간 0.031초

농촌유역의 비점원 오염 수질관리를 위한 인공습지 설계모형 (Design Model of Constructed Wetlands for Water Quality Management of Non-point Source Pollution in Rural Watersheds)

  • 최인욱;권순국
    • 한국농공학회지
    • /
    • 제44권5호
    • /
    • pp.96-105
    • /
    • 2002
  • As an useful water purification system for non-point source pollution in rural watersheds, interests in constructed wetlands are growing at home and abroad. It is well known that constructed wetlands are easily installed, no special managemental needs, and more flexible at fluctuating influent loads. They have a capacity for purification against nutrient materials such as phosphorus and nitrogen causing eutrophication of lentic water bodies. The Constructed Wetland Design Model (CWDM), developed through this study is consisted mainly of Database System, Runoff-discharge Prediction Submodel, Water Quality Prediction Submodel, and Area Assessment Submodel. The Database System includes data of watershed, discharge, water quality, pollution source, and design factors for the constructed wetland. It supplies data when predicting water quality and calculating the required areas of constructed wetlands. For the assessment of design flow, the GWLF (Generalized Watershed Loading Function) is used, and for water quality prediction in streams estimating influent pollutant load, Water Quality Prediction Submodel, that is a submodel of DSS-WQMRA model developed by previous works is amended. The calculation of the required areas of constructed wetlands is achieved using effluent target concentrations and area calculation equations that developed from the monitoring results in the United States. The CWDM is applied to Bokha watershed to appraise its application by assessing design flow and predicting water quality. Its application is performed through two calculations: one is to achieve each target effluent concentrations of BOD, SS, T-N and T-P, the other is to achieve overall target effluent concentrations. To prove the validity of the model, a comparison of unit removal rates between the calculated one from this study and the monitoring result from existing wetlands in Korea, Japan and United States was made. As a result, the CWDM could be very useful design tool for the constructed wetland in rural watersheds and for the non-point source pollution management.

홍수유출율에 관한 수문학적 고찰 (Hydrological Review on the Fload Runoff ratio)

  • 이순혁;음성진;박명근
    • 한국농공학회지
    • /
    • 제27권4호
    • /
    • pp.42-52
    • /
    • 1985
  • This study was attempted to derivate empirical formulas for the runoff: ratio during ilood. season at three watersheds of Dan Yang, Chung Ju, and Yeo Ju are located at upper, middle, and lower portion of Nam Han river basin, respectively. Obtained formulas for flood runoff ratio can be applied as an element for the estimation, peak discharge for the design of various hydraulics structures which can be concidented with meteorological and topographical condition. The obtained through this study were analyzed as follows. 1.It was found that the magnitude of runoff ratio depends on the amount of rainfall for all studying basins. 2.Empirical formulas 'for the runoff' ratio were derivated as 1- 2,707 Rt0.345, 1-1.691 Rt0.242 and 1-1.807 Rt0.227 at Dan Yang, Chung Ju and Yeo Ju watershed, respectively. 3.The magnitude of runoff ratio was appeared in the order of Dan Yang, Chung Ju, and Yeo Ju are located at upper, middle and lower portion of Nam Han rivet basin, respectively. 4.It was assumed that in general the more it rains, the lesser becomes the ratio of loss rainfall. Especially, the ratio of loss rainfall for Dan Yang, upper portion of river basin was shown as the lowest among three watersheds. Besides, the magnitude of that was appeared in the order of Chung Ju and Yeo Ju watershed located at middle, and lower part of river basin, respectively. 5.Relative and standard errors of runoff ratio calculated by empirical formulas were shown to be within ten percent to the observed runoff ratio in all watersheds. 6.It is urgently essential that the effect of antecedent rainfall have an influence on the next coming flood should be studied in near future.

  • PDF

부하지속곡선(LDC)을 이용한 영산강 · 탐진강수계 오염총량관리 목표수질 평가방법 적용 방안 (Application of the Load Duration Curve (LDC) to Evaluate the Rate of Achievement of Target Water Quality in the Youngsan · Tamjin River Watersheds)

  • 정은정;김홍태;김용석;신동석
    • 한국물환경학회지
    • /
    • 제32권4호
    • /
    • pp.349-356
    • /
    • 2016
  • Total Maximum Daily Loads (TMDLs) System has been used to improve water quality in the Youngsan·Tamjin river basin since 2004. The Basic Policy of TMDLs sets up the standard flow based on the average dry condition or mid-range flow during the last 10 years. However, Target Water Quality (TWQ) assessment on TMDLs has been used to evaluate water quality through eight-day intervals over 36 times a year. The results for allocation evaluation and target water quality evaluation were different from each other in the same unit watershed during the first period. In order to improve the evaluation method, researchers applied Load Duration Curve (LDC) to evaluate water quality in nine unit watersheds of the Youngsan·Tamjin river basin. The results showed that achievement rates of TWQ assessment with the current method and LDC were 67~100% and 78~100%, respectively. Approximately 11% of the achievement rates with use of LDC were higher than those with use of the current method. In conclusion, it is necessary to review the application of the LDC method in all Four Major River Watersheds.

공유림 분포패턴을 고려한 유역단위 산림기능평가 (Evaluation of Forest Functions Considering the Distribution Patterns of Communal Forests at the Watershed Level)

  • 권순덕;장광민;설아라;정주상
    • 한국산림과학회지
    • /
    • 제97권1호
    • /
    • pp.71-76
    • /
    • 2008
  • 본 연구에서는 공유림의 기능평가를 수행하기 위한 효율적인 평가단위를 결정하고자 하였다. 이러한 기능평가 단위로써 대유역, 중유역 그리고 소유역 단위의 평가방법을 고려하였다. 공유림의 경우 소유주체가 일원화 되지 않고 각 시 군의 행정권이 분산화 되어있으며, 산림의 규모가 영세한 특징이 있어 지번 단위의 평가방법은 공유림의 기능평가 단위로 적합하지 않다. 이에 따라 공유림 기능평가에 적합한 평가단위를 결정하기 위하여 집수량 기준에 따라 소 중 대유역으로 구분하고 각각에 대하여 산림기능평가를 수행하고 타당성을 검토하였다. 각 평가단위에 따른 기능평가 결과에서는 유역단위 기능 구분 시 공유림의 소규모 산지들을 일정 규모 이상의 산지로 집단화할 수 있는 장점이 있었다. 각 평단단위 별로는 소유역 단위에서 중 대유역 단위로 갈수록 산림의 기능이 지나치게 단순화 되는 경향이 나타나 소유역 단위의 기능구분이 공유림의 산림기능평가에 적합한 것으로 나타났다.

삼림환경(森林環境)이 수자원(水資源) 함양(涵養)에 미치는 영향(影響)에 관(關)한 연구(硏究) (Influences of Forest Environment on the Water Yield in Small Forested Watersheds)

  • 우보명
    • 한국산림과학회지
    • /
    • 제82권3호
    • /
    • pp.283-291
    • /
    • 1993
  • 이 연구는 삼림(森林)의 이수기능(理水機能) 및 환경보전(環境保全) 영향효과(影響效果)를 수량적(數量的)으로 구명(究明)하기 위하여 우리나라 남부지방에 위치한 서울대학교 농생대 부속 남부연습림(전남 광양군 옥룡면 추산리)내 북문골소유역(小流域)과 바람골소유역(小流域)의 2개 삼림소유역(森林小流域)에 자기우량계(自記雨量計), 직사각형 웨어 및 자기수위계(自記水位計)등의 삼림수문관측시설(森林水文觀測施設)을 설치하여 1991년 5월 11일부터 1992년 12월 31일까지 각 유역(流域)의 유출량(流出量), 유출유형(流出類型) 등의 개별(個別) 수문인자(水文因子)를 측정(測定) 분석(分析)하였다. 또한 1991년 5월부터 10월까지 수관차단(樹冠遮斷) 손실량(損失量), 수간유하우량(樹幹流下雨量) 및 수관통과우량(樹冠通過雨量) 등 개별 수문현상을 정량적(定量的)으로 측정(測定) 분석(分析)하여 삼림(森林)의 이수기능(理水機能)을 수량화(數量化)하여 기초수문자료를 제공하고자 이 연구를 수행하였다. 연구 기간동안 추산지역의 강우량은 1991년 5월부터 12월까지는 1,306.6mm, 1992년 1월부터 12월까지는 1,143.4mm이었다. 총강우량에 대한 수관차단율(樹冠遮斷率)은 소나무림에서 27.0%, 테다소나무림에서 24.3%였다. 삼림소유역(森林小流域)의 유출율(流出率)은 북문골소유역에서는 48.87, 바람골소유역에서는 41.19%이었다.

  • PDF

유역의 토지이용 특성을 고려한 비점오염원 관리방안 적용에 따른 저감 효율 분석 (Analysis of the Efficiency of Non-point Source Pollution Managements Considering the Land Use Characteristics of Watersheds)

  • 최유진;이서로;금동혁;한정호;박운지;김종건;임경재
    • 한국물환경학회지
    • /
    • 제36권5호
    • /
    • pp.405-422
    • /
    • 2020
  • Land use change by urbanization has significantly affected the hydrological process including the runoff characteristics. Due to this situation, it has been becoming more complicated to manage non-point source pollutions caused by rainfall. In order to effectively control non-point sources, it is necessary to identify the reduction efficiency of the various management method based on land use characteristics. Thus, the purpose of this study is to analyze the reduction efficiency of non-point source pollution management practices targeting three different watersheds with the different land use characteristics using the Soil and Water Assessment Tool (SWAT). To do this, the vulnerable subwatersheds to non-point source pollution occurrence within each watershed were selected based on the streamflow and water quality simulation results. Then, considering the land use, low impact development (LID) or best management practices (BMPs) were applied to the selected subwatersheds and the efficiency of each management was analyzed. As a result of analysis of the non-point source pollution reduction efficiency, when LID was applied to urban areas, the average reduction efficiencies of SS, NO3-N, and TP were 5.92%, 4.62%, and 10.35%, respectively. When BMPs were applied to rural areas, the average reduction efficiencies of SS, TN and TP were 35.45%, 4.37%, and 10.16%, respectively. The results of this study can be used as a reference for determining appropriate management methods for non-point source pollution in urban, rural, and complex watersheds.

LH-모멘트의 적정 차수 결정에 의한 설계홍수량 추정(II) (Estimation of Design Flood by the Determination of Best Fitting Order of LH-Moments(II))

  • 맹승진;이순혁
    • 한국농공학회지
    • /
    • 제45권1호
    • /
    • pp.33-44
    • /
    • 2003
  • This study was conducted to estimate the design flood by the determination of best fitting order for LH-moments of the annual maximum series at fifteen watersheds. Using the LH-moment ratios and Kolmogorov-Smirnov test, the optimal regional probability distribution was identified to be the Generalized Extreme Value (GEV) in the first report of this project. Parameters of GEV distribution and flood flows of return period n years were derived by the methods of L, L1, L2, L3 and L4-moments. Frequency analysis of flood flow data generated by Monte Carlo simulation was performed by the methods of L, L1, L2, L3 and L4-moments using GEV distribution. Relative Root Mean Square Error. (RRMSE), Relative Bias (RBIAS) and Relative Efficiency (RE.) using methods of L, Ll , L2, L3 and L4-moments for GEV distribution were computed and compared with those resulting from Monte Carlo simulation. At almost all of the watersheds, the more the order of LH-moments and the return periods increased, the more RE became, while the less RRMSE and RBIAS became. The Absolute Relative Reduction (ARR) for the design flood was computed. The more the order of LH-moments increased, the less ARR of all applied watershed became It was confirmed that confidence efficiency of estimated design flood was increased as the order of LH-moments increased. Consequently, design floods for the appled watersheds were derived by the methods of L3 and L4-moments among LH-moments in view of high confidence efficiency.

SWAT모형과 CMIP5 자료를 이용한 기후변화에 따른 농업용 저수지 기후변화 영향 평가 (Assessing the Climate Change Impacts on Agricultural Reservoirs using the SWAT model and CMIP5 GCMs)

  • 조재필;황세운;고광돈;김광용;김정대
    • 한국농공학회논문집
    • /
    • 제57권5호
    • /
    • pp.1-12
    • /
    • 2015
  • The study aimed to project inflows and demmands for the agricultural reservoir watersheds in South Korea considering a variety of regional characteristics and the uncertainty of future climate information. The study bias-corrected and spatially downscaled retrospective daily Global Climate Model (GCM) outputs under Representative Concentration Pathways (RCP) 4.5 and 8.5 emission scenarios using non-parametric quantile mapping method to force Soil and Water Assessment Tool (SWAT) model. Using the historical simulation, the skills of un-calibrated SWAT model (without calibration process) was evaluated for 5 reservoir watersheds (selected as well-monitored representatives). The study then, evaluated the performance of 9 GCMs in reproducing historical upstream inflow and irrigation demand at the five representative reservoirs. Finally future inflows and demands for 58 watersheds were projected using 9 GCMs projections under the two RCP scenarios. We demonstrated that (1) un-calibrated SWAT model is likely applicable to agricultural watershed, (2) the uncertainty of future climate information from different GCMs is significant, (3) multi-model ensemble (MME) shows comparatively resonable skills in reproducing water balances over the study area. The results of projection under the RCP 4.5 and RCP 8.5 scenario generally showed the increase of inflow by 9.4% and 10.8% and demand by 1.4% and 1.7%, respectively. More importantly, the results for different seasons and reservoirs varied considerably in the impacts of climate change.

북한지역의 소기후 추정을 위한 수문단위 설정 (Zoning Hydrologic Units for Geospatial Climatology in North Korea)

  • 김진희;윤진일
    • 한국농림기상학회지
    • /
    • 제13권1호
    • /
    • pp.20-27
    • /
    • 2011
  • 북한지역에 대해 좌표내장 수치기후지도를 제작하기 위한 선결조건으로서 국지 소기후 추정모형의 최소 공간적용단위인 표준유역(Hydrologic Unit)이 설정되어야 한다. Arc Hydro 기반의 유역추출 알고리즘을 ASTER GDEM에 적용하고, 북한의 5대강(예성강, 대동강, 청천강, 압록강, 두만강) 및 산경도에 나타난 산맥체계에 의해 보완함으로써 신뢰성 높은 북한지역 표준유역도를 제작하였다. 이 표준유역도에 의하면 북한지역은 21개의 대권역, 93개의 중권역, 885개의 소유역으로 구성된다. 기존 남한 표준유역도 840개와 결합하고 각각 소기후모형을 적용할 경우 한반도 전역을 1,725개의 소기후구로 하는 상세 농업기후지대구분이 가능해진다.

Effects of Wastewater Treatment Plants (WWTPs) on Downstream Water Quality and Their Comparisons with Upstream Water Quality in Major Korean Watersheds

  • Jang, Seong-Hui;Kim, Hyun-Mac;An, Kwang-Guk
    • 생태와환경
    • /
    • 제42권4호
    • /
    • pp.465-475
    • /
    • 2009
  • The purpose of the study was to evaluate spatial and temporal effects of wastewater treatment plants (WWTPs) on the water quality of downstreams (Tan Stream, TS; Daemyeong Stream, DS; Gwangju Stream, GS, and Kap Stream, KS) located in four major watersheds along with impact analysis of nutrient enrichments on the WWTPs during 2004~2008. In the four streams, seasonal means of BOD, COD, TN, and TP were significantly (p<0.01) greater in the downstreams ($D_s$) than the upstreams ($U_s$). The removal effect of nutrients (nitrogen, and phosphorus) from the WWTPs was much less than the BOD, indicating a greater nutrient impact on the downstreams. Seasonal dilution of organic matter, based on BOD, during the summer monsoon of July~September was most pronounced in the downstreams of all four watersheds. However, mean TN in the downstreams during the monsoon varied little in all four streams. Regression analysis of TN in the downstreams against TN from the WWTPs showed that in the TS, and DS regression slopes in the upstreams were similar to the slopes of downstream but there was a significant difference in the GS (p<0.001) and KS (p<0.01). Tan-Stream WWTP showed low removal efficiency of BOD and COD concentrations, compared to the nutrients, whereas, two WWTPs of Gwangju and Kap Stream had low removal effects in TN and TP. Regression analysis of TN and BOD in the downstreams showed that they was closely related (p<0.01) with stream water volume only in the GS. Our data analysis suggests that greater treatment efficiencies of phosphorus and nitrogen from the WWTPs may improve the downstream water quality.