• 제목/요약/키워드: Watershed model HSPF

검색결과 113건 처리시간 0.022초

주암댐 유역 비점오염부하량 우심지역 평가를 통한 오염물질 저감시설 최적 설치지점 선정 연구 (Assessment of Apprehensive Area of Non-Point Source Pollution Using Watershed Model Application in Juam Dam Watershed)

  • 이혜숙;최광순;정선아;이승재
    • 대한환경공학회지
    • /
    • 제37권10호
    • /
    • pp.551-557
    • /
    • 2015
  • 본 연구는 주암댐 유역을 대상으로 구축된 HSPF 결과를 활용하여 각 소유역별 비점오염원 부하량을 산정하여 비교함으로써 비점오염저감시설 우선 설치 대상지점을 평가하였으며 2011~2012년 BOD, TN, TP를 대상으로 모델 재현성을 검토된 결과를 활용하였다. 소유역별 비점오염부하량을 산정하여 비점오염저감시설 우선 설치 대상지점을 평가한 결과, BOD의 경우에는 2011년 평균 $8.8kg/day/km^2$, 2012년 평균 $9.1kg/day/km^2$, TN은 2011년 평균 $9.7kg/day/km^2$, 2012년 평균 $10.1kg/day/km^2$, TP는 2011년 평균 $0.30kg/day/km^2$, 2012년 평균 $0.33kg/day/km^2$으로 산정되었고, 보성강 상류에 위치한 소유역에서 상대적으로 높은 부하량이 유출되는 것으로 분석되었다. 특히, 봉화천 유역이 가장 우선순위가 높게 평가되었으며 미력천, 장평천, 율어천, 구암천, 석교천, 문덕천, 인천천, 봉내천 등의 순서로 평가되었으며 대체적으로 농업지역의 비율이 큰 소유역의 우선순위가 높은 것을 확인할 수 있었다.

수질오염총량관리를 위한 유역모형의 유달 과정 재현방안 연구 (Study on Representation of Pollutants Delivery Process using Watershed Model)

  • 황하선;이한필;이성준;안기홍;박지형;김용석
    • 한국물환경학회지
    • /
    • 제32권6호
    • /
    • pp.589-599
    • /
    • 2016
  • Implemented since 2004, TPLC (Total Pollution Load Control) is the most powerful water-quality protection program. Recently, uncertainty of prediction using steady state model increased due to changing water environments, and necessity of a dynamic state model, especially the watershed model, gained importance. For application of watershed model on TPLC, it needs to be feasible to adjust the relationship (mass-balance) between discharged loads estimated by technical guidance, and arrived loads based on observed data at the watershed outlet. However, at HSPF, simulation is performed as a semi-distributed model (lumped model) in a sub-basin. Therefore, if the estimated discharged loads from individual pollution source is directly entered as the point source data into the RCHRES module (without delivery ratio), the pollutant load is not reduced properly until it reaches the outlet of the sub-basin. The hypothetic RCHRES generated using the HSPF BMP Reach Toolkit was applied to solve this problem (although this is not the original application of Reach Toolkit). It was observed that the impact of discharged load according to spatial distribution of pollution sources in a sub-basin, could be expressed by multi-segmentation of the hypothetical RCHRES. Thus, the discharged pollutant load could be adjusted easily by modification of the infiltration rate or characteristics of flow control devices.

황강유역에서의 유역규모를 고려한 HSPF 모형의 적용성 평가 (Application Analysis of HSPF Model Considering Watershed Scale in Hwang River Basin)

  • 최현구;한건연;황보현;조완희
    • 환경영향평가
    • /
    • 제20권4호
    • /
    • pp.509-521
    • /
    • 2011
  • The purpose of this study is to estimate overall reliability and applicability of the watershed modeling for systematic management of point and non-point sources via water quality analysis and prediction of runoff discharge within watershed. Recently, runoff characteristics and pollutant characteristics have been changing in watershed by anomaly climate and urbanization. In this study, the effects of watershed scale were analyzed in runoff and water quality modeling using HSPF. In case of correlation coefficient, its range was from 0.936 to 0.984 in case A(divided - 2 small watersheds). On the other hand, its range was form 0.840 to 0.899 in case B(united - 1 watershed). In case of Nash-Sutcliffe coefficient, its range was from 0.718 to 0.966 in case A. On the other hand, its range was from 0.441 to 0.683 in case B. As a result, it was judged that case A was more accurate than case B. Therefore, runoff and water quality modeling in minimum watershed scale that was provided data for calibration and verification was judged to be favorable in accuracy. If optimal watershed dividing and parameter optimization using PEST in HSPF with more reliable measured data are carried out, more accurate runoff and water quality modeling will be performed.

HSPF와 CE-QUAL-W2 모델의 연계 적용을 이용한 용담댐 저수지 탁수현상의 모델 연구 (Modeling Study of Turbid Water in the Stratified Reservoir using linkage of HSPF and CE-QUAL-W2)

  • 이혜숙;정선아;박상영;이요상
    • 대한환경공학회지
    • /
    • 제30권1호
    • /
    • pp.69-78
    • /
    • 2008
  • 본 연구에서는 용담댐을 대상으로 유역모델 HSPF와 저수지모델 CE-QUAL-W2를 연계 적용함으로써 강우시 저수지로 유입되는 탁수 관리를 위한 방안을 연구하였다. 강우시 저수지 유입하천의 유출량 및 부유사 농도 특성을 분석하기 위하여 유역모델을 적용하여 모델의 재현성을 검토하였으며 유역모델 결과를 저수지모델의 입력자료로 제공하여 저수지모델의 재현성 검토 및 저수지 내 시간에 따른 탁수분포 양상 등을 분석하였다. 유역모델의 유출량 및 부유사 농도의 재현성 검토 결과, 모델 예측값과 실측값이 적절하게 일치하는 것으로 나타났다. 유역모델의 결과를 연계하여 홍수기 저수지의 물수지, 수온 변화 및 탁도를 대상으로 저수지모델의 재현성을 검토한 결과, 탁수에 의한 수온성층의 변화와 탁수층의 위치, 시간에 따른 탁수분포의 변화 양상 등을 실제와 매우 유사하게 모의하였다. 이와 같이 유역모델과 저수지모델의 연계 적용은 발생 가능한 강우에 대하여 저수지로 유입되는 유량 및 탁수발생량을 예측할 수 있으며 탁수층의 위치와 최고 탁도 등 저수지내의 탁수변화 양상을 비교적 쉽고 정확하게 예측할 수 있는 장점이 있다. 본 연구결과에 의하면 용담댐을 대상으로 집중강우시 HSPF 유역모델과 CE-QUAL-W2 저수지 모델을 연계 적용함으로써 탁수관리 방안으로 활용될 수 있음을 검증하였다.

보청A유역 유량 및 영양물질 자동보정을 위한 HSPF-PEST 연계적용 (Automatic Calibration of Stream Flow and Nutrients Loads Using HSPF-PEST at the Bochung A Watershed)

  • 전지홍;최동혁;임경재;김태동
    • 한국농공학회논문집
    • /
    • 제52권5호
    • /
    • pp.77-86
    • /
    • 2010
  • Hydrologic Simulation Program-Fortran (HSPF) coupled with PEST which is optimization program was calibrated and validated at Bochung watershed by using monitoring data of water quantities and nutrient loading. Although the calibrated data were limited, model parameters of each land use type were optimized and coefficient of determinations were ranged from 0.94 to 0.99 for runoff, from 0.89 to 1.00 for TN loading, and from 0.92 to 1.00 for TP loading. The optimized hydrological parameters indicated that the forested land could retain rainfall within soil layer with high soil layer depth and infiltration rate compared with other land use type. Hydrological characteristics of paddy rice field are low infiltration rate and coefficient of roughness. The calibrated parameters related to nutrient loading indicated generation of nutrient pollution from agricultural area including upland and paddy rice field higher than other land use type resulting from fertilizer application. Overall PEST program is useful tool to calibrate HSPF automatically without consuming time and efforts.

논의 저류효과를 고려한 유역수문모델링 - HSPF Surface-Ftable의 적용 - (Watershed-scale Hydrologic Modeling Considering a Detention Effect of Rice Paddy Fields using HSPF Surface-Ftable)

  • 성충현;오찬성;황세운
    • 한국농공학회논문집
    • /
    • 제60권5호
    • /
    • pp.41-54
    • /
    • 2018
  • A method to account a detention in a rice paddy field in hydrologic modeling was tested at plot and watershed scales. Hydrologic Simulation Program - Fortran (HSPF) and its one of surface runoff modeling method, i.e Surface-Ftable, were used to simulate a inundated condition in a rice paddy culture for a study plot and basins in Saemangeum watershed. Surface-Ftable in HSPF defines surface runoff ratio with respect to surface water depth in a pervious land segment, which can be implemented to the feature of water management in a rice paddy field. A Surface-Ftable for paddy fields in Saemangeum watershed was developed based on the study paddy field monitoring data from 2013 to 2014, and was applied to Jeonju-chun and Jeongeup-chun basins which comprise 12% and 22% of paddy fields in the basins, respectively. Four gaging stations were used to calibrate and validate the watershed models for the period of 2009 and 2013. Model performed 7.13% and 9.68% in PBIAS, and 0.94 and 0.90 in monthly NSE during model calibrations at Jeonju and Jeongeup stations, respectively, while the models were validated its applicability at Hyoja and Gongpyung stations. The comparison of results with and without considering detention effect of paddy fields confirmed the validity of the Surface-Ftable method in modeling watersheds containing rice paddy fields.

HSPF 모형을 이용한 합천댐 유입량 추정 (Estimation of the Hapcheon Dam Inflow Using HSPF Model)

  • 조현경;김상민
    • 한국농공학회논문집
    • /
    • 제61권5호
    • /
    • pp.69-77
    • /
    • 2019
  • The objective of this study was to calibrate and validate the HSPF (Hydrological Simulation Program-Fortran) model for estimating the runoff of the Hapcheon dam watershed. Spatial data, such as watershed, stream, land use, and a digital elevation map, were used as input data for the HSPF model. Observed runoff data from 2000 to 2016 in study watershed were used for calibration and validation. Hydrologic parameters for runoff calibration were selected based on the user's manual and references, and trial and error method was used for parameter calibration. The $R^2$, RMSE (root-mean-square error), RMAE (relative mean absolute error), and NSE (Nash-Sutcliffe efficiency coefficient) were used to evaluate the model's performance. Calibration and validation results showed that annual mean runoff was within ${\pm}4%$ error. The model performance criteria for calibration and validation showed that $R^2$ was in the rang of 0.78 to 0.83, RMSE was 2.55 to 2.76 mm/day, RMAE was 0.46 to 0.48 mm/day, and NSE was 0.81 to 0.82 for daily runoff. The amount of inflow to Hapcheon Dam was calculated from the calibrated HSPF model and the result was compared with observed inflow, which was -0.9% error. As a result of analyzing the relation between inflow and storage capacity, it was found that as the inflow increases, the storage increases, and when the inflow decreases, the storage also decreases. As a result of correlation between inflow and storage, $R^2$ of the measured inflow and storage was 0.67, and the simulated inflow and storage was 0.61.

유역관리에 따른 수질개선 효과분석을 위한 HSPF 모델 적용 (Application of HSPF Model for Effect Analyses of Watershed Management Plans on Receiving Water Qualities)

  • 송혜원;이혜원;최정현;박석순
    • 대한환경공학회지
    • /
    • 제31권5호
    • /
    • pp.358-363
    • /
    • 2009
  • 유역관리 계획이 하천 수질에 미치는 영향을 분석하기 위하여 HSPF (Hydrological Simulation Program-Fortran) 모델을 경안천에 적용하였다. BASINS 3.1 GIS 프로그램에 DEM (Digital Elevation Model), 토지이용도, 하천도, 환경기초시설 등을 입력하여 경안천 유역을 총 57개 소유역으로 구분하고 모델 입력 자료를 산출하였다. 먼저 관측된 기상 및 하천 수량 자료를 이용하여 수문 모델의 타당성을 확인한 후 수질 모델을 보정하고 검증하였다. 적용한 수질은 수온, DO, BOD, $NO_3-N$, $NH_3-N$, Org-N, TN 그리고 TP이며, 대부분의 경우 측정치와 예측치가 적절히 일치하였다. 보정 및 검증 완료된 모델을 활용하여 소유역의 수질관리 방안에 따른 경안천 본류의 수질개선 효과를 분석하였다. 적용한 시나리오는 세 가지로, 첫째, 유역관리 활동을 통한 지천 수질개선, 둘째, 환경기초시설의 확충과 처리수질 향상, 그리고 셋째, 이 두 가지를 동시에 적용하는 것이다. 예측결과에 따르면 환경기초시설 확충과 처리수질 향상이 유역관리를 통한 지천 수질개선보다 효과적인 것으로 나타났다. 경안천이 만족할 만한 수질로 개선되기 위해서는 두 가지 방안이 모두 적용되어야 하는 것으로 나타났다.

HSPF-Paddy Development for Simulating Pollutant Loadings from Paddy Fields

  • Jeon, Ji-Hong;Yoon, Chun G.;Jung, Kwang-Wook;Jang, Jae-Ho
    • 한국농공학회논문집
    • /
    • 제47권7호
    • /
    • pp.57-66
    • /
    • 2005
  • The Hydrological Simulation Program - FORTRAN (HSPF) was modified to simulate nonpoint pollutant loadings from paddy fields using a field experimental data collected during 2001-2002. The concept of a 'dike height' was added in a modified HSPF code, named HSPF-Paddy, to consider the function of retaining water by a weir at the field outlet. The effect of fertilization on the variances of nutrients on the soil surface and shallow soil layer was described mathematically with a Dirac delta function (or first-order kinetics). As confirmed through model verification, the HSPF-Paddy modifications were shown to represent the function of retaining water, varied ponded water, and surface runoff by forced drain during both rainy and non-rainy seasons and reasonably predicted the water balance and nutrients behavior in paddy fields. It is a distributed watershed model which, with the paddy modifications, can now simulate nonpoint pollutant loadings where paddy fields are dominant, and it can be used to evaluate the effects of paddy fields on the water quality at a basin scale, and assess the impacts of proposed BMPs applied to paddy fields.

오염총량관리지역내 소하천에 대한 BASINS 4.0 및 WinHSPF의 적용과 유전알고리즘을 이용한 매개변수의 보정 (Application of BASIN 4.0 and WinHSPF to a Small Stream in Total Water Pollution Load Management Area and Calibration of Model Parameter using Genetic Algorithm)

  • 조재현;윤승진
    • 환경영향평가
    • /
    • 제21권1호
    • /
    • pp.161-169
    • /
    • 2012
  • Recently various attempts have been made to apply HSPF model to calculate runoff and diffuse pollution loads of stream and reservoir watersheds. Because the role of standard flow is very important in the water quality modelling of Total Water Pollution Load Management, HSPF was used as a means of estimating standard flow. In this study, BASINS 4.0 and WinHSPF was applied to the Gomakwoncheon watershed, genetic algorithm(GA) and influence coefficient algorithm were used to calibrate the runoff parameters of the WinHSPF. The objective function is the sum of the squares of the normalized residuals of the observed and calculated flow and it is optimized using GA. Estimates of the optimum runoff parameters are made at each iteration of the influence coefficient algorithm. The calibration results showed a relatively good correspondence between the observed and the calculated values. The standard flow(Q275) of the Gomakwoncheon watershed was estimated using the ten years of weather data.