• 제목/요약/키워드: Watershed Algorithms

검색결과 56건 처리시간 0.028초

정확한 경계 추출 및 수행시간 단축을 위한 개선된 워터쉐드 알고리즘 (Modified Watershed Algorithm for Extracting Correct Edge and Reducing Processing Time)

  • 박동인;김태원;고윤호;최재각
    • 한국멀티미디어학회논문지
    • /
    • 제13권10호
    • /
    • pp.1463-1473
    • /
    • 2010
  • 본 논문에서는 정확한 경계 추출 및 수행시간 단축을 위한 개선된 워터쉐드 알고리즘을 제안한다. 본 논문에서는 두 가지 새로운 알고리즘을 제안한다. 첫 번째는 기존 강우방식과 침수방식의 워터쉐드 확장 방식을 복합적으로 적용한 것이다. 먼저 각 방식의 장점과 단점을 규명하고 장점은 유지하고 단점은 보완하여 정확한 경계를 추출하면서도 수행시간을 단축할 수 있는 새로운 확장방식을 제안한다. 두 번째는 보다 정확한 경계를 얻기 위한 새로운 우선순위 결정 알고리즘이다. 기울기의 영교차점은 경계로 예상되는 위치이지만 기존의 워터쉐드 알고리즘은 이러한 위치를 경계로 추출하지 못하는 한계를 가지고 있다. 따라서 보다 정확한 경계를 추출할 수 있도록 워터쉐드를 위한 새로운 우선순위 결정 알고리즘을 제안한다. 모의실험을 통해 제안된 알고리즘과 기존 알고리즘을 비교하고 제안된 방법이 보다 정확한 경계를 추출할 수 있음을 보인다.

관개 회귀수 추정을 위한 BROOK90-K의 개발과 검증 (Development and validation of BROOK90-K for estimating irrigation return flows)

  • 박종철;김만규
    • 한국지형학회지
    • /
    • 제23권1호
    • /
    • pp.87-101
    • /
    • 2016
  • This study was conducted to develop a hydrological model of catchment water balance which is able to estimate irrigation return flows, so BROOK90-K (Kongju National University) was developed as a result of the study. BROOK90-K consists of three main modules. The first module was designed to simulate water balance for reservoir and its catchment. The second and third module was designed to simulate hydrological processes in rice paddy fields located on lower watershed and lower watershed excluding rice paddy fields. The models consider behavior of floodgate manager for estimating the storage of reservoir, and modules for water balance in lower watershed reflects agricultural factors, such as irrigation period and, complex sources of water supply, as well as irrigation methods. In this study, the models were applied on Guryangcheon stream watershed. R2, Nash-Sutcliffe efficiency (NS), NS-log1p, and root mean square error between simulated and observed discharge were 0.79, 0.79, 0.69, and 4.27 mm/d respectively in the model calibration period (2001~2003). Furthermore, the model efficiencies were 0.91, 0.91, 0.73, and 2.38 mm/d respectively over the model validation period (2004~2006). In the future, the developed BROOK90-K is expected to be utilized for various modeling studies, such as the prediction of water demand, water quality environment analysis, and the development of algorithms for effective management of reservoir.

격자기반의 강우유출모형을 통한 한강수계 다목적댐의 홍수유출해석 (Flood Runoff Analysis of Multi-purpose Dam Watersheds in the Han River Basin using a Grid-based Rainfall-Runoff Model)

  • 박인혁;박진혁;허영택
    • 한국물환경학회지
    • /
    • 제27권5호
    • /
    • pp.587-596
    • /
    • 2011
  • The interest in hydrological modeling has increased significantly recently due to the necessity of watershed management, specifically in regards to lumped models, which are being prosperously utilized because of their relatively uncomplicated algorithms which require less simulation time. However, lumped models require empirical coefficients for hydrological analyses, which do not take into consideration the heterogeneity of site-specific characteristics. To overcome such obstacles, a distributed model was offered as an alternative and the number of researches related to watershed management and distributed models has been steadily increasing in the recent years. Thus, in this study, the feasibility of a grid-based rainfall-runoff model was reviewed using the flood runoff process in the Han River basin, including the ChungjuDam, HoengseongDam and SoyangDam watersheds. Hydrological parameters based on GIS/RS were extracted from basic GIS data such as DEM, land cover, soil map and rainfall depth. The accuracy of the runoff analysis for the model application was evaluated using EFF, NRMSE and QER. The calculation results showed that there was a good agreement with the observed data. Besides the ungauged spatial characteristics in the SoyangDam watershed, EFF showed a good result of 0.859.

Assessment of three optimization techniques for calibration of watershed model

  • Birhanu, Dereje;Kim, Hyeonjun;Jang, Cheolhee;Park, Sanghyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.428-428
    • /
    • 2017
  • In this study, three optimization techniques efficiency is assessed for calibration of the GR4J model for streamflow simulation in Selmacheon, Boryeong Dam and Kyeongancheon watersheds located in South Korea. The Penman-Monteith equation is applied to estimate the potential evapotranspiration, model calibration, and validation is carried out using the readily available daily hydro-meteorological data. The Shuffled Complex Evolution-University of Arizona(SCE-UA), Uniform Adaptive Monte Carlo (UAMC), and Coupled Latin Hypercube and Rosenbrock (CLHR) optimization techniques has been used to evaluate the robustness, performance and optimized parameters of the three catchments. The result of the three algorithms performances and optimized parameters are within the recommended ranges in the tested watersheds. The SCE-UA and CLHR outputs are found to be similar both in efficiency and model parameters. However, the UAMC algorithms performances differently in the three tested watersheds.

  • PDF

SWAT-CUP을 이용한 유출 및 유사모의 불확실성 분석 (Uncertainty Analysis on the Simulations of Runoff and Sediment Using SWAT-CUP)

  • 김민호;허태영;정세웅
    • 한국물환경학회지
    • /
    • 제29권5호
    • /
    • pp.681-690
    • /
    • 2013
  • Watershed models have been increasingly used to support an integrated management of land and water, non-point source pollutants, and implement total daily maximum load policy. However, these models demand a great amount of input data, process parameters, a proper calibration, and sometimes result in significant uncertainty in the simulation results. For this reason, uncertainty analysis is necessary to minimize the risk in the use of the models for an important decision making. The objectives of this study were to evaluate three different uncertainty analysis algorithms (SUFI-2: Sequential Uncertainty Fitting-Ver.2, GLUE: Generalized Likelihood Uncertainty Estimation, ParaSol: Parameter Solution) that used to analyze the sensitivity of the SWAT(Soil and Water Assessment Tool) parameters and auto-calibration in a watershed, evaluate the uncertainties on the simulations of runoff and sediment load, and suggest alternatives to reduce the uncertainty. The results confirmed that the parameters which are most sensitive to runoff and sediment simulations were consistent in three algorithms although the order of importance is slightly different. In addition, there was no significant difference in the performance of auto-calibration results for runoff simulations. On the other hand, sediment calibration results showed less modeling efficiency compared to runoff simulations, which is probably due to the lack of measurement data. It is obvious that the parameter uncertainty in the sediment simulation is much grater than that in the runoff simulation. To decrease the uncertainty of SWAT simulations, it is recommended to estimate feasible ranges of model parameters, and obtain sufficient and reliable measurement data for the study site.

A HIERARCHICAL APPROACH TO HIGH-RESOLUTION HYPERSPECTRAL IMAGE CLASSIFICATION OF LITTLE MIAMI RIVER WATERSHED FOR ENVIRONMENTAL MODELING

  • Heo, Joon;Troyer, Michael;Lee, Jung-Bin;Kim, Woo-Sun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.647-650
    • /
    • 2006
  • Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery was acquired over the Little Miami River Watershed (1756 square miles) in Ohio, U.S.A., which is one of the largest hyperspectral image acquisition. For the development of a 4m-resolution land cover dataset, a hierarchical approach was employed using two different classification algorithms: 'Image Object Segmentation' for level-1 and 'Spectral Angle Mapper' for level-2. This classification scheme was developed to overcome the spectral inseparability of urban and rural features and to deal with radiometric distortions due to cross-track illumination. The land cover class members were lentic, lotic, forest, corn, soybean, wheat, dry herbaceous, grass, urban barren, rural barren, urban/built, and unclassified. The final phase of processing was completed after an extensive Quality Assurance and Quality Control (QA/QC) phase. With respect to the eleven land cover class members, the overall accuracy with a total of 902 reference points was 83.9% at 4m resolution. The dataset is available for public research, and applications of this product will represent an improvement over more commonly utilized data of coarser spatial resolution such as National Land Cover Data (NLCD).

  • PDF

남한지역 일단위 강우량 공간상세화를 위한 BCSA 기법 적용성 검토 (Application of Bias-Correction and Stochastic Analogue Method (BCSA) to Statistically Downscale Daily Precipitation over South Korea)

  • 황세운;정임국;김시호;조재필
    • 한국농공학회논문집
    • /
    • 제63권6호
    • /
    • pp.49-60
    • /
    • 2021
  • BCSA (Bias-Correction and Stochastic Analog) is a statistical downscaling technique designed to effectively correct the systematic errors of GCM (General Circulation Model) output and reproduce basic statistics and spatial variability of the observed precipitation filed. In this study, the applicability of BCSA was evaluated using the ASOS observation data over South Korea, which belongs to the monsoon climatic zone with large spatial variability of rainfall and different rainfall characteristics. The results presented the reproducibility of temporal and spatial variability of daily precipitation in various manners. As a result of comparing the spatial correlation with the observation data, it was found that the reproducibility of various climate indices including the average spatial correlation (variability) of rainfall events in South Korea was superior to the raw GCM output. In addition, the needs of future related studies to improve BCSA, such as supplementing algorithms to reduce calculation time, enhancing reproducibility of temporal rainfall patterns, and evaluating applicability to other meteorological factors, were pointed out. The results of this study can be used as the logical background for applying BCSA for reproducing spatial details of the rainfall characteristic over the Korean Peninsula.

수문학적 유역특성자료 자동화 추출 및 분석시스템 개발 (I) (System Development for Automatic Extraction and Analysis of Hydrology-Related Watershed Characteristic Data)

  • 황의호;권형중;이근상;유병혁;고덕구
    • 한국지리정보학회지
    • /
    • 제11권3호
    • /
    • pp.1-12
    • /
    • 2008
  • 본 연구에서는 다양한 수문 모형에 적용을 위한 입력자료 도출 기반을 마련하고자 보다 편리하고 체계적인 유역특성자료 분석시스템을 개발하였다. PRMS 모형을 이용하여 유출분석 수행시 입력자료 생성을 위해 사용되는 USGS WEASEL을 참고하여 시스템 개발항목을 도출하고, 체계적이고 효율적인 시스템 개발 및 유지관리를 위하여 UML을 이용한 객체지향 시스템을 설계하였다. 또한, 편리한 사용자 인터페이스 제공 및 다양한 수질 수문 모형에 적용하기 위하여 GIS 컴포넌트 기반인 ArcGIS ArcObjects를 이용하여 유역특성자료 분석시스템을 개발하였다.

  • PDF

MRC 기반의 영상 부호화를 위한 분수령 알고리즘을 이용한 효과적인 신호 채움 기법 (Efficient Signal Filling Method Using Watershed Algorithm for MRC-based Image Compression)

  • 박상효;이시웅
    • 한국콘텐츠학회논문지
    • /
    • 제15권2호
    • /
    • pp.21-30
    • /
    • 2015
  • Mixed raster content 모델 기반의 영상 부호화는 전경과 배경 레이어에 빈 영역인 don't care region (DCR)이 발생하게 되며, 이 영역에 대한 신호 채움 방식에 따라 전체적인 부호화 성능이 큰 영향을 받게 된다. DCR을 채우기 위한 대부분의 기존 기법들은 홀 주변 기존 영역의 특성을 효율적으로 이용하지 않아 신호 채움 후에도 기존 신호 영역에 존재하던 고주파 성분이 반영될 뿐 아니라, DCR 경계에서의 신호 불연속으로 인해 고주파 성분이 추가적으로 발생한다는 문제점을 갖고 있다. 이 문제를 해결하기 위해 본 논문은 우선순위 기반의 적응적 영역 확장법을 이용한 새로운 DCR 채움 알고리즘을 제안한다. 제안 알고리즘은 분수령 알고리즘을 이용하여 DCR의 각 홀 픽셀에 대한 신호 특성을 판단한 후, 이를 토대로 영역 채움의 우선순위를 결정한다. 이 우선 순위를 기반으로 영역 확장을 수행함으로써 고주파 성분을 포함하고 있는 영역의 확장이 최소화되어 전체적인 부호화 효율이 향상될 수 있다. 실험 결과를 통해 제안 알고리즘이 비교 대상 알고리즘에 비해 효율적인 신호 채움으로 우수한 부호화 성능을 가짐을 보인다.

Efficient CT Image Segmentation Algorithm Using both Spatial and Temporal Information

  • Lee, Sang-Bock;Lee, Jun-Haeng;Lee, Samyol
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2004년도 추계 종합학술대회 논문집
    • /
    • pp.505-510
    • /
    • 2004
  • This paper suggests a new CT-image segmentation algorithm. This algorithm uses morphological filters and the watershed algorithms. The proposed CT-image segmentation algorithm consists of six parts: preprocessing, image simplification, feature extraction, decision making, region merging, and postprocessing. By combining spatial and temporal information, we can get more accurate segmentation results. The simulation results illustrate not only the segmentation results of the conventional scheme but also the results of the proposed scheme; this comparison illustrates the efficacy of the proposed technique. Furthermore, we compare the various medical images of the structuring elements. Indeed, to illustrate the improvement of coding efficiency in postprocessing, we use differential chain coding for the shape coding of results.

  • PDF