• Title/Summary/Keyword: Watermark security

Search Result 120, Processing Time 0.02 seconds

3D Printing Watermarking Method Based on Radius Curvature of 3D Triangle

  • Pham, Ngoc-Giao;Song, Ha-Joo;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.12
    • /
    • pp.1951-1959
    • /
    • 2017
  • Due to the fact that 3D printing is applied to many areas of life, 3D printing models are often used illegally without any permission from the original providers. This paper presents a novel watermarking algorithm for the copyright protection and ownership identification for 3D printing based on the radius curvature of 3D triangle. 3D triangles are extracted and classified into groups based on radius curvature by the clustering algorithm, and then the mean radius curvature of each group will be computed for watermark embedding. The watermark data is embedded to the groups of 3D triangle by changing the mean radius curvature of each group. In each group, we select a 3D triangle which has the nearest radius curvature with the changed mean radius curvature. Finally, we change the vertices of the selected facet according to the changed radius curvature has been embedded watermark. In experiments, the distance error between the original 3D printing model and the watermarked 3D printing model is approximate zero, and the Bit Error Rate is also very low. From experimental results, we verify that the proposed algorithm is invisible and robustness with geometric attacks rotation, scaling and translation.

A Lightweight Integrity Authentication Scheme based on Reversible Watermark for Wireless Body Area Networks

  • Liu, Xiyao;Ge, Yu;Zhu, Yuesheng;Wu, Dajun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4643-4660
    • /
    • 2014
  • Integrity authentication of biometric data in Wireless Body Area Network (WBAN) is a critical issue because the sensitive data transmitted over broadcast wireless channels could be attacked easily. However, traditional cryptograph-based integrity authentication schemes are not suitable for WBAN as they consume much computational resource on the sensor nodes with limited memory, computational capability and power. To address this problem, a novel lightweight integrity authentication scheme based on reversible watermark is proposed for WBAN and implemented on a TinyOS-based WBAN test bed in this paper. In the proposed scheme, the data is divided into groups with a fixed size to improve grouping efficiency; the histogram shifting technique is adopted to avoid possible underflow or overflow; local maps are generated to restore the shifted data; and the watermarks are generated and embedded in a chaining way for integrity authentication. Our analytic and experimental results demonstrate that the integrity of biometric data can be reliably authenticated with low cost, and the data can be entirely recovered for healthcare applications by using our proposed scheme.

A Watermarking Technique for User Authentication Based on a Combination of Face Image and Device Identity in a Mobile Ecosystem

  • Al-Jarba, Fatimah;Al-Khathami, Mohammed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.303-316
    • /
    • 2021
  • Digital content protection has recently become an important requirement in biometrics-based authentication systems due to the challenges involved in designing a feasible and effective user authentication method. Biometric approaches are more effective than traditional methods, and simultaneously, they cannot be considered entirely reliable. This study develops a reliable and trustworthy method for verifying that the owner of the biometric traits is the actual user and not an impostor. Watermarking-based approaches are developed using a combination of a color face image of the user and a mobile equipment identifier (MEID). Employing watermark techniques that cannot be easily removed or destroyed, a blind image watermarking scheme based on fast discrete curvelet transform (FDCuT) and discrete cosine transform (DCT) is proposed. FDCuT is applied to the color face image to obtain various frequency coefficients of the image curvelet decomposition, and for high frequency curvelet coefficients DCT is applied to obtain various frequency coefficients. Furthermore, mid-band frequency coefficients are modified using two uncorrelated noise sequences with the MEID watermark bits to obtain a watermarked image. An analysis is carried out to verify the performance of the proposed schema using conventional performance metrics. Compared with an existing approach, the proposed approach is better able to protect multimedia data from unauthorized access and will effectively prevent anyone other than the actual user from using the identity or images.

Medical Image Verification Watermarking for Healthcare Information Management

  • Choi, Un-Sook;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.205-210
    • /
    • 2017
  • This paper presents a verification watermarking applied to healthcare information management. The proposed method uses the whole region based on the public-key cryptograph, which is transformed by the DWT transform to integrity verification. Furthermore, the public-key cryptograph algorithm is used for the embedded watermark image. We adaptively select the upper bit-plane including the LSB parts of each block when the watermark is inserted.

An adaptive digital watermark using the spatial masking (공간 마스킹을 이용한 적응적 디지털 워터 마크)

  • 김현태
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.3
    • /
    • pp.39-52
    • /
    • 1999
  • In this paper we propose a new watermarking technique for copyright protection of images. The proposed technique is based on a spatial masking method with a spatial scale parameter. In general it becomes more robust against various attacks but with some degradations on the image quality as the amplitude of the watermark increases. On the other hand it becomes perceptually more invisible but more vulnerable to various attacks as the amplitude of the watermark decreases. Thus it is quite complex to decide the compromise between the robustness of watermark and its visibility. We note that watermarking using the spread spectrum is not robust enought. That is there may be some areas in the image that are tolerable to strong watermark signals. However large smooth areas may not be strong enough. Thus in order to enhance the invisibility of watermarked image for those areas the spatial masking characteristics of the HVS(Human Visual System) should be exploited. That is for texture regions the magnitude of the watermark can be large whereas for those smooth regions the magnitude of the watermark can be small. As a result the proposed watermarking algorithm is intend to satisfy both the robustness of watermark and the quality of the image. The experimental results show that the proposed algorithm is robust to image deformations(such as compression adding noise image scaling clipping and collusion attack).

Improvement of DCT-based Watermarking Scheme using Quantized Coefficients of Image (영상의 양자화 계수를 이용한 DCT 기반 워터마킹 기법)

  • Im, Yong-Soon;Kang, Eun-Young;Park, Jae-Pyo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.17-22
    • /
    • 2014
  • Watermarking is one of the methods that insist on a copyright as it append digital signals in digital informations like still mobile image, video, other informations. This paper proposed an improved DCT-based watermarking scheme using quantized coefficients of image. This process makes quantized coefficients through a Discrete Cosine Transform and Quantization. The watermark is embedded into the quantization coefficients in accordance with location(key). The quantized watermarked coefficients are converted to watermarked image through the inverse quantization and inverse DCT. Watermark extract process only use watermarked image and location(key). In watermark extract process, quantized coefficients is obtained from watermarked image through a DCT and quantization process. The quantized coefficients select coefficients using location(key). We perform it using inverse DCT and get the watermark'. Simulation results are satisfied with high quality of image (PSNR) and Normalized Correlation(NC) from the watermarked image and the extracted watermark.

Secured Telemedicine Using Whole Image as Watermark with Tamper Localization and Recovery Capabilities

  • Badshah, Gran;Liew, Siau-Chuin;Zain, Jasni Mohamad;Ali, Mushtaq
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.601-615
    • /
    • 2015
  • Region of interest (ROI) is the most informative part of a medical image and mostly has been used as a major part of watermark. Various shapes ROIs selection have been reported in region-based watermarking techniques. In region-based watermarking schemes an image region of non-interest (RONI) is the second important part of the image and is used mostly for watermark encapsulation. In online healthcare systems the ROI wrong selection by missing some important portions of the image to be part of ROI can create problem at the destination. This paper discusses the complete medical image availability in original at destination using the whole image as a watermark for authentication, tamper localization and lossless recovery (WITALLOR). The WITALLOR watermarking scheme ensures the complete image security without of ROI selection at the source point as compared to the other region-based watermarking techniques. The complete image is compressed using the Lempel-Ziv-Welch (LZW) lossless compression technique to get the watermark in reduced number of bits. Bits reduction occurs to a number that can be completely encapsulated into image. The watermark is randomly encapsulated at the least significant bits (LSBs) of the image without caring of the ROI and RONI to keep the image perceptual degradation negligible. After communication, the watermark is retrieved, decompressed and used for authentication of the whole image, tamper detection, localization and lossless recovery. WITALLOR scheme is capable of any number of tampers detection and recovery at any part of the image. The complete authentic image gives the opportunity to conduct an image based analysis of medical problem without restriction to a fixed ROI.

Data-Hiding Method using Digital Watermark in the Public Multimedia Network

  • Seo, Jung-Hee;Park, Hung-Bog
    • Journal of Information Processing Systems
    • /
    • v.2 no.2
    • /
    • pp.82-87
    • /
    • 2006
  • In spite of the rapid development of the public network, the variety of network-based developments currently raises numerous risks factors regarding copyright violation, the prohibition and distribution of digital media utilization, safe communication, and network security. Among these problems, multimedia data tend to increase in the distributed network environment. Hence, most image information has been transmitted in the form of digitalization. Therefore, the need for multimedia contents protection must be addressed. This paper is focused on possible solutions for multimedia contents security in the public network in order to prevent data modification by non-owners and to ensure safe communication in the distributed network environment. Accordingly, the Orthogonal Forward Wavelet Transform-based Scalable Digital Watermarking technique is proposed in this paper.

Audio Watermarking Technique Based on Digital Filter (디지털 필터를 이용한 오디오 워터마킹 기술)

  • 신승원;김종원;최종욱
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2001.11a
    • /
    • pp.464-468
    • /
    • 2001
  • In this paper, we propose a robust watermarking technique that accepts time scaling, pitch shift, add noise and a lot of lossy compression such as MP3, AAC, WMA. The technique is developed based on digital filtering. Being designed according to critical band of HAS (human auditory system), the digital filters nearly affect audio quality. Furthermore, before implementing digital filtering, wavelet transform decomposes the audio signal into several signals that is composed of specific frequencies. Designed digital filters scan the decomposed signal. The designed digital filter, band-stop filter, distorts and eliminates specific frequencies of audio signals. Watermarking detection can be accomplished by FFT (Fast Fourier Transform). Firstly, segments of audio signal are transformed by FFT. Then, the obtained amplitude spectrum by FFT is summed repeatedly. Finally the watermark detector can find filters used to watermark encoding based on eliminating frequencies. The suggested technique can embed 4bits/s in a robust manner.

  • PDF

A Feature-Based Robust Watermarking Scheme Using Circular Invariant Regions

  • Doyoddorj, Munkhbaatar;Rhee, Kyung-Hyung
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.5
    • /
    • pp.591-600
    • /
    • 2013
  • This paper addresses a feature-based robust watermarking scheme for digital images using a local invariant features of SURF (Speeded-Up Robust Feature) descriptor. In general, the feature invariance is exploited to achieve robustness in watermarking schemes, but the leakage of information about hidden watermarks from publicly known locations and sizes of features are not considered carefully in security perspective. We propose embedding and detection methods where the watermark is bound with circular areas and inserted into extracted circular feature regions. These methods enhance the robustness since the circular watermark is inserted into the selected non-overlapping feature regions instead of entire image contents. The evaluation results for repeatability measures of SURF descriptor and robustness measures present the proposed scheme can tolerate various attacks, including signal processing and geometric distortions.