• Title/Summary/Keyword: Waterlogged wood

Search Result 42, Processing Time 0.024 seconds

MICROMORPHOLOGICAL ASPECTS OF HARDWOODS DETERIORATED IN THE SEA-WATER FROM WRECKED SHIP'S TIMER (수침목재의 재질분석에 관한 연구-미시형태적 변화를 중심으로)

  • KIM, Yoon-Soo;CHOI, Kwang-Nam
    • 보존과학연구
    • /
    • s.7
    • /
    • pp.246-264
    • /
    • 1986
  • Micoromorphological alterations of sea-waterlogged woods by marinemicro-oragnisms were investigated by the light and scanning electron microscopy as a part of serial investigations on the shipwrecked materials which were excavated at the sea shore of Wando-Kun, southern coast of Korea in 1984.Deterioration of sea-waterlogged wood by marine microorganisms were varied with the wood species. The degree of deterioration even in the same wood specieswas different according to the part where it was in mud of sea-water. However, the resistance of Torreya nucifera over the marine organisms was marked. Deterioration in cell wall may be classified into three types; thinning of cell wall, separation of secondary wall from compound middle lamella and tunneling of cell wall. Thinning and separation were frequently observed, while the tunneling was rare. Among the wood cell elements of hardwoods, vessel wall was the least deteriorated. The difference degree of degradation of cell wall constituents and the accumulation of inorganic substances in cell lumen indicate that some factors to be considered for the conservation treatment were discussed. The kinds of marine microorganisms invading and/or inhabiting in wrecked wooden ship were also discussed.

  • PDF

Ultrastructural Observation of Bacterial Attacks on the Waterlogged Archaeological Woods (세균에 의한 수침고목재 피해양태의 초미시구조적 관찰)

  • Kim, Y.S.;Choi, J.H.;Bae, H.J.;Nilsson, T.;Daniel, G.
    • Journal of Conservation Science
    • /
    • v.1 no.1 s.1
    • /
    • pp.3-11
    • /
    • 1992
  • Micromorphological changes in waterlogged archaeological woods excavated from Sweden and Germany were investigated. Especially bacterial attacks on those wood samples under near anaerobic conditions were examined by transmission electron microscopy(TEM). The major feature of micromorphological alterations in those wood samples was the preferential destruction of secondary wood cell wall. In contrast, the middle lamella was not extensively degraded. Three distinct degradation patterns by bacteria were observed : erosion, cavitation and tunnelling bacteria. Erosion and cavitation bacteria attacked primarily $S_2$ layer, whereas tunnelling bacteria made the tunnel-like degradation along the $S_1$ layer. Tunnelling bacteria, in some samples, were able to degrade tunnel in the lignin-rich areas, such as middle lamella, suggesting that these bacteria had the capacity to degrade the lignin. IR spectra indicate that hemicellulose and cellulose in the waterlogged woods were preferentially decomposed. Breakdown of the lignin, on the other hand, was much slower.

  • PDF

Alteration of Physical and chemical Characteristics of Waterlogged Archaeological Woods After Cleaning (세척 후 수침고목재의 물리.화학적 특성 변화)

  • Cha, Mi-Young;Lee, Kwang-Ho;Kim, Yoon-Soo
    • Journal of Conservation Science
    • /
    • v.19
    • /
    • pp.19-30
    • /
    • 2006
  • Alteration of physical and chemical characteristics and the effect of removal of mineral substances in waterlogged archaeological woods by different cleaning processes were examined using oak wood(Quercus spp.) that was excavated from wetland near Gwangju, Korea. Cleaning methods employed in the present work were (1) tools, (2) deaeration, (3) EDTA and (4) ultrasonic cleaning, which are being currently applied in the field of preservation treatment. Cleaning process were performed independently or continuously. Composition of mineral substances in the waterlogged archaeological wood was almost same as the that of soil in which waterlogged archaeological woods were buried. In case of independent cleaning, tools cleaning efficiently removed the mineral substances on surface. Surface color become brighter after cleaning with EDTA. In contrast, deaeration and ultrasonic cleaning did not show any significant removal of mineral substances. In continuous cleaning process, tool cleaning as the first step treatment showed the same effect as shown in independent cleaning. Although deaeration as the second step cleaning did not remove the mineral substances, it could be assumed to contribute the infiltration of dimensional agents by homogenization of wood. EDTA treatment (the third step cleaning) removed the iron(Fe) and increased the whiteness of wood color. The ultrasonic treatment (the fourth step cleaning) removed the sodium(Na) remained after EDTA treatment and the fine mineral substances.

  • PDF

Polyethylene Glycol을 이용한 수침목재의 보존처리

  • Kim, Yong-Han
    • 보존과학연구
    • /
    • s.5
    • /
    • pp.179-188
    • /
    • 1984
  • 본문은 Conservation of Water logged Wood(1979, Netherlands National Commission for UNESCO)중의 "The Use of Polyethylene glycol for the Treatment of Waterlogged wood-its Past and Future(Dr.C.Pearson)" 및 "The Conservation of ship wrecks by impregnation with Polyethylene glycol (Dr.J.deJong)"을 역편한 것임.

  • PDF

A study on the Recovery of waste fluids of the conservation treatment of waterlogged wooden artifacts (수침목재유물보존처리 폐액의 재활용에 관한 연구)

  • Yang, Seok-Jin;Kim, Jong-Hwa;Song, Ju-Yeong;Lee, Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.108-115
    • /
    • 2012
  • Archaeological waterlogged woods found under the sea, in lakes, or in swamp environments are generally weak and fragile. If waterlogged wood materials were taken out of the water and left without modification, they would collapse and lose their original dimensions completely. Conservation is performed to replace the water with chemical agents and to give dimensional stabilization and durability. EDTA and PEG are the most commonly used in the preservation of wood. pH control-precipitation method is used for recovery of EDTA from waste fluid of archeological waterlogged wood conservation treatment. The black substance is eliminated from wood as Fe-EDTA complex are formed and EDTA is separated and precipitated from Fe-EDTA complexes at pH 2.68 or less. The result of analysis of the precipitated products and the commercial EDTA by FT-IR and FE-SEM showed that precipitated product by pH adjusted was not a type of Fe-EDTA complex, but pure EDTA. Waste fluid produced in PEG treatment shows the black color and has an offensive odor by organic matter extracted from wood. Color of waste fluid is decolored with oxidation reaction by peroxy hydrate. In FT-IR and SEM-EDX of PEG after freeze-drying process, no significant change of functional groups induced from oxidation is observed, and any metal ion does not exist in the solid PEG specimen. The molecular weight of PEG is measured using GPC and viscometry. Properties of PEG before and after preservation treatment, and after oxidation with $H_2O_2$ were not changed. Consequently, the peroxidation with $H_2O_2$ is a reasonable and simple method to decolor the used PEG solution.

Species Identification of Waterlogged Archaeological Woods Excavated at Shinchang-dong Wetland Site (광주신창동저습지유적출토수침목재의수종식별 - 2005년광주 ~ 장성간도로확장공사구간내 -)

  • Park, Youngman
    • Conservation Science in Museum
    • /
    • v.10
    • /
    • pp.29-42
    • /
    • 2009
  • This paper explores the types (species of trees) of 25 pieces of waterlogged wood excavated from the area between Gwangju and Jangseong during road expansion by the Gwangju National Museum. These 25 pieces of wood include nine pieces of Quercus (Lepidobalanus Cerris)sp., six pieces of Quercus (Lepidobalanus Prinus)sp., three pieces of Castanea sp., two pieces of Salix sp., one piece of Alnus sp., one piece of Prunus sp., one piece of Morus sp., one piece of Chionanthus sp., and one piece of Acanthopanax sp.

Humidity-Controlled Drying of PEG-Treated Waterlogged Woods (PEG처리 수침고목재의 조습건조)

  • Lee, Kwang-Hee;Kim, Soo-Chul;Park, Won-Kyu
    • Journal of Conservation Science
    • /
    • v.27 no.1
    • /
    • pp.91-100
    • /
    • 2011
  • This study is to examine the PEG concentration, and drying humidity and drying periods of humidity-controlled drying(HCD) for conservation of waterlogged woods(Pinus densiflora S. et Z.), and dimension stability of HCD were compared with those of air-drying and vacuum freeze-drying(VFD). Dimension stability of vacuum freeze-drying was the most excellent, i.e., PEG crystal was uniformly distributed in woods. Increasing concentrations of PEG, dimension stability of HCD was increased and drying periods decreased. Dimension stability of HCD after the treatment with the high concentration(70%) of PEG soaking was similar to those of VFD after the treatment with the low concentration(40%) of PEG soaking. In conclusion, high concentration(about 70% in water) PEG solution was the most suitable as a pre-treatment for HCD of waterlogged woods. However, drying should be maintained with enough high humidity and longer period.

Compressive Strength of Waterlogged Archaeological Wood after PEG Treatment with Concentration and Solvent (PEG 처리 수침고목재의 농도 및 용매에 따른 압축강도 변화)

  • Kim, Soo-Chul
    • Journal of Conservation Science
    • /
    • v.28 no.2
    • /
    • pp.95-99
    • /
    • 2012
  • The compressive strength of PEG along processing concentration and solvent is willing to be measured and proper processing condition for exhibition and storage is also willing to be measured by comparing with dimensional stability. In the advanced research of setting PEG-preprocessing concentration & solvent for freeze drying of waterlogged archaeological wood of high water content, vacuum freeze drying showed the highest dimension stability after 40% PEG-preprocessing of aqueous solution. In this study, the compressive strength increased in proportion of processing concentration and water showed the relatively-higher compressive strength than t-butanol regarding solvent. Especially, it showed that there is no big strength difference between PEG 40% and PEG 50% in aqueous solution by 6.6%(16kgf/$cm^2$). According to the above results, it was recognized that it is most effective to implement freeze drying after 40% PEG-preprocessing when want to dimensional stability and compressive strength simultaneously.

Chemical and micromorphological changes of archaeological waterlogged wood degraded in marine situations. (해양에서 열화된 완도선 수침고목재의 화학적.미시형태적 변화)

  • Kim, Ik-Joo
    • 보존과학연구
    • /
    • s.11
    • /
    • pp.87-105
    • /
    • 1990
  • Chemical and micro morphological changes of archaeological waterlogged woods from shipwrecked materials in marine situations were investigated which were submerged in seabed for over 900 years. Tested Wood species were Pinusdensiflora, Zelkova serrata, Quercus acutissima and Camellia japonica. The obtained results were summarized as follows; Chemical analysis showed that lignin content was increased, whereas the amout of holocellulose was heavily decreased in the degraded archaeological lwoods(DAW), when compared to the recent woods. The amount of alkalineextractives in the DAW was extremley high. IR spectra showed that disappearance of absortion band at $1,730㎝^-1$ intensity increase at 1,600, 1,500 and $1,270㎝^-1$ and the emergence of single band around $1,050㎝^-1$.Microscopic investigation showed that cell wall of latewood tracheids and fiber in the DAW were severely degraded while, early wood tracheids less degraded. Degradation in the cell wall was mainley occurred in $S_2$layer, while the middle lamella was the least degraded. The micro morphological characteristics of DAW were separation of secondary wall from middle lamella, cavities aligned with micro fibril angle in $S_2$layer and granular appearance of secondary wall by the bacterial attack.

  • PDF