• Title/Summary/Keyword: Waterborne-diseases

Search Result 17, Processing Time 0.022 seconds

Management Plan for Rural Groundwater Resources in the Era of Post COVID-19 (포스트 코로나 시대 농어촌지하수 관리 방안)

  • Lee, Byung Sun;Seo, Sangjin;Lee, Gyusang;Yoon, Seok-Hwan;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.4
    • /
    • pp.1-9
    • /
    • 2022
  • This study was conducted to supplement new-normal strategies on management plans of rural groundwater resources in the era of Post COVID-19. Global outbreak of COVID-19 has damaged across all areas including public policy, economics, industrial services, and others without exception, which has resulted in establishing new-normal strategies in order to restore balance and functions as for these areas. The new-normal ones were represented as enhancing preventative management on infectious diseases, expanding non face-to-face services, enhancing protective trades and food securities, and preparing growth policies on public services using the 4th industrial revolution techniques. In this study, G-WASH_AD (Groundwater supply, sanitation, and hygiene with attraction and digitization) was suggested to be new-normal strategies on rural groundwater resources. The G-WASH_AD was consisted of three detailed action plans: a preventative plan on waterborne-diseases of groundwater (PP), a groundwater-tourism plan with rural heritage (GP), and an application plan of the 4th industrial revolution techniques to groundwater facilities and its data (P4). The PP can contribute to protect human health from waterborne-diseases and minimize hazardous effects on crop cultivation. The GP accompanied with high-quality groundwater resources is able to strengthen rural tourism, to promote marketing activities on local agricultural products, and to increase household incomes of rural communities. The P4 can reinforce fast, comfortable, and scientific management on groundwater facilities and its data, creating a virtuous cycle between innovative management on groundwater and growth of technology related to it. Results of the G-WASH_AD strategies can encourage a green growth engine in field of rural groundwater management keeping up with Post COVID-19.

A Systematic Review of Toxicological Studies to Identify the Association between Environmental Diseases and Environmental Factors (환경성질환과 환경유해인자의 연관성을 규명하기 위한 독성 연구 고찰)

  • Ka, Yujin;Ji, Kyunghee
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.6
    • /
    • pp.505-512
    • /
    • 2021
  • Background: The occurrence of environmental disease is known to be associated with chronic exposure to toxic chemicals, including waterborne contaminants, air/indoor pollutants, asbestos, ingredients in humidifier disinfectants, etc. Objectives: In this study, we reviewed toxicological studies related to environmental disease as defined by the Environmental Health Act in Korea and toxic chemicals. We also suggested a direction for future toxicological research necessary for the prevention and management of environmental disease. Methods: Trends in previous studies related to environmental disease were investigated through PubMed and Web of Science. A detailed review was provided on toxicological studies related to the humidifier disinfectants. We identified adverse outcome pathways (AOPs) that can be linked to the induction of environmental diseases, and proposed a chemical screening system that uses AOP, chemical toxicity big data, and deep learning models to select chemicals that induce environmental disease. Results: Research on chemical toxicity is increasing every year, but there is a limitation to revealing a clear causal relationship between exposure to chemicals and the occurrence of environmental disease. It is necessary to develop various exposure- and effect-biomarkers related to disease occurrence and to conduct toxicokinetic studies. A novel chemical screening system that uses AOP and chemical toxicity big data could be useful for selecting chemicals that cause environmental diseases. Conclusions: From a toxicological point of view, developing AOP related to environmental diseases and a deep learning-based chemical screening system will contribute to the prevention of environmental diseases in advance.

Significance of Viable but Nonculturable Escherichia coli: Induction, Detection, and Control

  • Ding, Tian;Suo, Yuanjie;Xiang, Qisen;Zhao, Xihong;Chen, Shiguo;Ye, Xingqian;Liu, Donghong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.417-428
    • /
    • 2017
  • Diseases caused by foodborne or waterborne pathogens are emerging. Many pathogens can enter into the viable but nonculturable (VBNC) state, which is a survival strategy when exposed to harsh environmental stresses. Pathogens in the VBNC state have the ability to evade conventional microbiological detection methods, posing a significant and potential health risk. Therefore, controlling VBNC bacteria in food processing and the environment is of great importance. As the typical one of the gram-negatives, Escherichia coli (E. coli) is a widespread foodborne and waterborne pathogenic bacterium and is able to enter into a VBNC state in extreme conditions (similar to the other gram-negative bacteria), including inducing factors and resuscitation stimulus. VBNC E. coli has the ability to recover both culturability and pathogenicity, which may bring potential health risk. This review describes the concrete factors (nonthermal treatment, chemical agents, and environmental factors) that induce E. coli into the VBNC state, the condition or stimulus required for resuscitation of VBNC E. coli, and the methods for detecting VBNC E. coli. Furthermore, the mechanism of genes and proteins involved in the VBNC E. coli is also discussed in this review.

The Control Realities of Water Purifier in Northern Part of Gyeonggi-do. (경기북부지역의 정수기물 관리실태 조사)

  • 박용배;손진석;강정복;방선재;김중범;최명순
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • There are lots of waterborne diseases which are caused by pathogenic microorganisms disseminated in contaminated environment. The purpose of this study is to investigate the status of water qualify and in order to investigate the sanitary condition of water purifier in northern part of Gyeonggi-do. We analyzed pathogenic microorganisms and 44 items of drinking water criteria from April to July in 2002. The results were as follows. 1. In 774 samples of water purifier, Pathogenic bacteria(salmonella, E coli O-157, O-26, O-111, shigella, pseudomonas etc.) were not isolated and total coliforms not detected. 2. About 76.5% of the water with purifier are found to be appropriated to the drinking water quality criteria. but 182 samples(23.5%) were without limits of drinking water criteria. 3. In the microbiological examination, 774 samples of purified water showed that 169 samples(21.9%) exceed the range of recommended limits(100 $CFU/m{\ell}$) to the total viable bacterial counts by pour plate method.

The Bactericidal Effects of Chlorine Dioxide in Drinking Water (이산화염소에 의한 수돗물의 살균효과)

  • 이윤진;최종헌;우달식;남상호
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.52-57
    • /
    • 1998
  • The disinfection of public water supplies has been used to prevent the transmission of waterborne diseases throughout the worlds. Although chlorine has been used as the primary disinfactant, its safety was first questioned in 1974 when chlorination of drinking water was found to result in the formation of trihalomethanes(THMs). Chlorine dioxide was selected as one alternative disinfactant. But the application of chlorine dioxide in water treatment has been limited because of concerns about the health effects of DBPs. In these experiments, chlorine dioxide showed the effective inactivation on both total coliforms and HPC at 3.0 mg $ClO_2/L$. The bactericidal effects of chlorine dioxide showed a tendency to increase as pH decreased, but the differences were not so sizable.

  • PDF

Groundwater Contamination of Noroviruses in Busan, Ulsan, and Gyeongsangnam-do, Korea (부산, 울산 및 경상남도 지역의 지하수 중 norovirus 오염실태 조사)

  • Park, Byung-Ju;Oh, Hae-Ri;Kang, Ho-Young;Jang, Kyung-Lib
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.819-828
    • /
    • 2011
  • To inspect norovirus contamination of groundwater in south eastern areas of Korea, a systematic survey of groundwater in Busan, Ulsan, and Gyeongsangnam-do was performed for two years from 2009 to 2010. For this purpose, we first optimized the nested reverse transcription-PCR condition by designing two sets of primers for the detection of norovirus genogroups, GI and GII. Of 145 samples, 21 (25.9%) and 15 (23.4%) were norovirus positive in the dry season (April to June) and wet season (July to August), respectively. The detection frequencies of norovirus in Busan, Ulsan, and Gyeongsangnam-do were 15%, 7%, and 32%, respectively, reflecting a geographical difference in their distribution. The GI and GII isolates were 5 and 31, respectively, indicating the prevalence of GII in the tested areas. According to phylogenetic analysis of their nucleotide sequences, all of the GI isolates were identified to genotype GI.5 whilst the GII isolates were divided into two genotypes, GII.3 and GII.4. Neither physical-chemical parameters such as pH, temperature, oxidation-reduction potential, and dissolved oxygen, nor microbial indicators of water quality such as total bacteria, total coliforms, and Escherichia coli were statistically correlated with contamination of norovirus in the groundwater. Interestingly, however, the presence of norovirus was closely correlated with low turbidity (<0.50 NTU). The present study suggests that periodical monitoring of norovirus in groundwater is necessary to prevent epidemic waterborne diseases and to secure better sanitary conditions for public health.

Development of Molecular Diagnosis Using Multiplex Real-Time PCR and T4 Phage Internal Control to Simultaneously Detect Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis from Human Stool Samples

  • Shin, Ji-Hun;Lee, Sang-Eun;Kim, Tong Soo;Ma, Da-Won;Cho, Shin-Hyeong;Chai, Jong-Yil;Shin, Eun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.5
    • /
    • pp.419-427
    • /
    • 2018
  • This study aimed to develop a new multiplex real-time PCR detection method for 3 species of waterborne protozoan parasites (Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis) identified as major causes of traveler's diarrhea. Three target genes were specifically and simultaneously detected by the TaqMan probe method for multiple parasitic infection cases, including Cryptosporidium oocyst wall protein for C. parvum, glutamate dehydrogenase for G. lamblia, and internal transcribed spacer 1 for C. cayetanensis. Gene product 21 for bacteriophage T4 was used as an internal control DNA target for monitoring human stool DNA amplification. TaqMan probes were prepared using 4 fluorescent dyes, $FAM^{TM}$, $HEX^{TM}$, $Cy5^{TM}$, and CAL Fluor $Red^{(R)}$ 610 on C. parvum, G. lamblia, C. cayetanensis, and bacteriophage T4, respectively. We developed a novel primer-probe set for each parasite, a primer-probe cocktail (a mixture of primers and probes for the parasites and the internal control) for multiplex real-time PCR analysis, and a protocol for this detection method. Multiplex real-time PCR with the primer-probe cocktail successfully and specifically detected the target genes of C. parvum, G. lamblia, and C. cayetanensis in the mixed spiked human stool sample. The limit of detection for our assay was $2{\times}10$ copies for C. parvum and for C. cayetanensis, while it was $2{\times}10^3$ copies for G. lamblia. We propose that the multiplex real-time PCR detection method developed here is a useful method for simultaneously diagnosing the most common causative protozoa in traveler's diarrhea.

Status and Prospects of PCR Detection Methods for Diagnosing Pathogenic Escherichia coli : A Review

  • Yim, Jin-Hyeok;Seo, Kun-Ho;Chon, Jung-Whan;Jeong, Dongkwan;Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.39 no.2
    • /
    • pp.51-62
    • /
    • 2021
  • Escherichia coli are the predominant facultative bacteria found in the gastrointestinal tract of animals and humans. Some strains of E. coli that acquire virulence factors and cause foodborne and waterborne diseases in humans are called pathogenic E. coli and can be divided into five pathotypes according to the virulence mechanism: EAEC, EHEC, EIEC, EPEC, and ETEC. Although selective media have been developed to detect E. coli, distinguishing pathogenic strains from non-pathogenic ones is difficult because of their similar biochemical properties. Therefore, it is very important to find a new and effective diagnostic method to identify pathogenic E. coli. With recent advances in molecular biology and whole genome sequencing, the use of polymerase chain reaction (PCR) is increasing rapidly. In this review paper, we provide an overview of pathogenic E. coli and present a review on PCR detection methods that can be used to diagnose pathogenic E. coli. In addition, the possibility of real-time PCR incorporating IAC is introduced. Consequently, this review paper will contribute to solving the current challenges related to the detection of pathogenic E. coli.

Presence of Cryptosporidium spp. and Giardia duodenalis in Drinking Water Samples in the North of Portugal

  • Almeida, Andre;Moreira, Maria Joao;Soares, Sonia;Delgado, Maria de Lurdes;Figueiredo, Joao;Silva, Elisabete;Castro, Antonio;Da Cosa, Jose Manuel Correida
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.1
    • /
    • pp.43-48
    • /
    • 2010
  • Cryptosporidium and Giardia are 2 protozoan parasites responsible for waterborne diseases outbreaks worldwide. In order to assess the prevalence of these protozoans in drinking water samples in the northern part of Portugal and the risk of human infection, we have established a long term program aiming at pinpointing the sources of surface water, drinking water, and environmental contamination, working with the water-supply industry. Total 43 sources of drinking water samples were selected, and a total of 167 samples were analyzed using the Method 1623. Sensitivity assays regarding the genetic characterization by PCR and sequencing of the genes, 18S SSU rRNA, for Cryptosporidium spp. and $\beta$, -giardin for G. duodenalis were set in the laboratory. According to the defined criteria, molecular analysis was performed over 4 samples. Environmental stages of the protozoa were detected in 25.7% (43 out of 167) of the water samples, 8.4% (14 out of 167) with cysts of Giardia, 10.2% (17 out of 167) with oocysts of Cryptosporidium and 7.2% (12 out of 167) for both species. The mean concentrations were 0.1-12.7 oocysts of Cryptosporidium spp. per 10 L and 0.1-108.3 cysts of Giardia duodenalis per 10 L. Our results suggest that the efficiency in drinking water plants must be ameliorated in their efficiency in reducing the levels of contamination. We suggest the implementation of systematic monitoring programs for both protozoa. To authors' knowledge, this is the first report evaluating the concentration of environmental stages of Cryptosporidium and Giardia in drinking water samples in the northern part of Portugal.

Internal Short-circuiting Estimation in Clearwell : Part A. Improving T10/T Using Intra Basin and Diffuser Wall by Applying ISEM to Field (정수지 내부 단락류 발생 평가 : Part A. 정수장 내부 단락류 분석을 통한 장폭비와 형태가 T10/T 값에 미치는 영향 연구)

  • Shin, Eunher;Lee, Seungjae;Kim, Sunghoon;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.105-112
    • /
    • 2008
  • Disinfection is a basic and effective microorganism inactivation method and historically contributed a decrease in waterborne diseases. To guarantee the disinfection ability, improving T in CT value is important. Many indexes are used to estimate the hydraulic efficiency, however, these are black-box analysis. Therefore it is need to develope new estimation method. In this study, internal short-circuiting estimation method (ISEM) is developed using CFD and we inquire into the factor which causes increase of $T_{10}/T$ value as LW ratio increases. And the effect of shape on the relation of LW ratio and $T_{10}/T$ is analyzed. As LW ratio increases, internal short-circuiting index (ISI) of influent and effluent zone is rapidly reduced and recirculation and dead zone are reduced in channel zone. Therefore, as the $T_{10}/T$ value converges maximum value, ISI curve is changed from "V" shape to "U" shape and hydraulic efficiency is improved especially in downstream portion of clearwell. The less the shape ratio(width/length of clearwell) is the less the $T_{10}/T$ value is at a same LW ratio because the portion of turning zone increases as shape ration decreases, therefore more boundary separation is generated.