• Title/Summary/Keyword: Waterborne pathogen

Search Result 4, Processing Time 0.017 seconds

Detection of Waterborne Pathogens by PCR-reverse Blot Hybridization

  • Choi, Yeon-Im;Lee, Gyu-Sang;Bang, Hye-Eun;Kim, Jong-Bae;Lee, Hye-Young
    • Biomedical Science Letters
    • /
    • v.16 no.1
    • /
    • pp.10-18
    • /
    • 2010
  • The present study was set to develop comprehensive system for assessing the safety of drinking water using PCR-reverse blot hybridization assay (REBA). The REBA developed in this study can detect waterborne pathogens such as Shigella spp., Salmonella spp., Citrobacter spp., Enterobacter spp., Klebsiella spp., Yersinia spp., Mycobacterium spp., Listeria spp. at the genus level, and Escherichia coli, Citrobacter freundii, Klebsiella pneumoniae, Pseudomonas aeruginosa, Yersinia enterocolitica, Y. pseudotuberculosis, Mycobacterium avium complex, M. marinum, Enterococcus faecalis, and Staphylococcus aureus at the species level, and E. coli O157:H7 at the strain level.

Triboelectric Energy Harvesting for Self-powered Antibacterial Applications

  • In-Yong Suh;Sang-Woo Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.213-218
    • /
    • 2023
  • Triboelectric nanogenerators (TENGs) have emerged as a highly promising energy harvesting technology capable of harnessing mechanical energy from various environmental vibrations. Their versatility in material selection and efficient conversion of mechanical energy into electric energy make them particularly attractive. TENGs can serve as a valuable technology for self-powered sensor operation in preparation for the IoT era. Additionally, they demonstrate potential for diverse applications, including energy sources for implanted medical devices (IMDs), neural therapy, and wound healing. In this review, we summarize the potential use of this universally applicable triboelectric energy harvesting technology in the disinfection and blocking of pathogens. By integrating triboelectric energy harvesting technology into human clothing, masks, and other accessories, we propose the possibility of blocking pathogens, along with technologies for removing airborne or waterborne infectious agents. Through this, we suggest that triboelectric energy harvesting technology could be an efficient alternative to existing pathogen removal technologies in the future.

Epidemiological investigation on the outbreak of foodborne and waterborne disease due to Norovirus with delayed notification (노로바이러스에 기인한 수인성·식품매개감염병 집단발생의 지연신고에 대한 역학조사)

  • Ha, Mikyung;Kim, Hyeongsu;Kim, Yong Ho;Na, Min Sun;Yu, Mi Jung
    • Journal of agricultural medicine and community health
    • /
    • v.43 no.4
    • /
    • pp.258-269
    • /
    • 2018
  • Objectives: There was an outbreak of foodborne and waterborne disease among high school students at Okcheon in June, 2018. First attack occurred June $5^{th}$ but seven days later it was notified. The purpose of this investigation was to evaluate the pathogen of outbreak and cause of delayed notification. Methods: First, we did a questionnaire survey for 61 cases and 122 controls to find what symptoms they had and whether they ate foods or drank water from June $2^{nd}$ to June $12^{th}$. Second, we investigated the environment of cafeteria and drinking water. Third, we examined specimen of cases and environment to identify bacteria or virus. Results: Attack rate of this outbreak was 7.8%. Drinking water was strongly suspected as a source of infection in questionnaire survey but we could not find the exact time of exposure. Norovirus was identified in specimen of cases (2 students), drinking water (at main building and dormitory) and cafeteria (knife, dishtowel, hand of chef) Conclusions: We decided norovirus as the pathogen of this outbreak based on the clinical features of cases with diarrhea vomiting, abdominal pain and recovery within 2 or 3 days after onset, outbreak due to drinking water and microbiologic examination, And the cause of delayed notification might be the non-existence of the nurse teacher at that time and the lack of understanding of teachers on immediate notification under the outbreak. To prevent the delayed notification, notification system about outbreak of foodborne and waterborne disease in school is needed to be improved.

Detection of Giardia lamblia in River Water Samples Using PCR and RT-PCR (PCR 및 RT-PCR을 이용한 하천수 중 Giardia lamblia 검출)

  • Cho, Eun-Ju;Lee, Mok-Young;Byun, Seung-Heun;Han, Sun-Hee;Ahn, Seoung-Koo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.904-908
    • /
    • 2007
  • The protozoan pathogen Giardia lamblia has been major cause of waterborne enteric disease. In this study, we tried to identify G. lamlbia of human infectious species and to detect viable C. lamblia in river water samples including three sites of Han River mainstream and an its creek using PCR and RT-PCR technique. The PCR/RT-PCR methods were performed by using giardin primer based on the giardin gene targeting ventral disk of Giardia. Sensitivity testing in the DNA/RNA extraction and PCR/RT-PCR amplification steps showed that it was possible to detect a single cyst of G. lamblia and viable G. lamblia. The PCR/RT-PCR methods were compared with immunofluorescence(IF) assay by analyzing 48 samples collected from the mainstream water and the creek water. The mean concentration of the total cysts were 6.3 cysts/10 L(arithmetic mean, n = 48) and the positive detection rate were 62.5%(30/48). And the mean concentration of the cysts excluding empty cysts were 4.5 cysts/10 L and the positive detection rate were 52.1%(25/48). It resulted that 24 of 48 samples included Giardia lamblia by PCR assay and 10 of 48 samples included viable G. lamblia by RT-PCR assay. It resulted that the PCR/RT-PCR technique would be available to river water samples with low concentration of Giardia cysts. And it could support the Korean protozoan standard method, which provides useful information for species and viability.