• Title/Summary/Keyword: Water-table fluctuation

Search Result 49, Processing Time 0.026 seconds

Numerical Simulation of Ground Heat Exchanger Embedded Pile Considering Unsaturated Soil Condition (불포화 지반 조건을 고려한 파일 매입형 열교환기의 수치해석)

  • Choi, Jung-Chan;Lee, Seung-Rae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.213-220
    • /
    • 2010
  • This study presents a numerical simulation model of vertical ground heat exchangers, considering unsaturated hydro static ground conditions induced by the ground water table fluctuation. Heat transfer in ground and grout is modeled by a 3-D FEM transient conductive heat transfer model, where heat transfer between circulating fluid and heat exchanging pipe is treated as 1-D quasi steady state forced convective elements. To take into account the unsaturated ground condition, soil thermal conductivity and heat capacity which are dependent on the matric suction are applied to ground elements. Parametric studies considering various ground water table conditions are conducted to investigate the influence of unsaturated hydro static ground condition on the mean heat exchange rate of ground heat exchanger. Simulation results considering water table fluctuation show 60~100% of mean heat exchange rate for a saturated soil condition and 125~208% of that for a dry soil condition. Thus consideration of unsaturated soil condition is substantially recommended for more accurate design and performance evaluation for ground heat exchangers.

  • PDF

Modeling saturated-unsaturated moisture flow in soils (포화층및 불포화층에 대한 토양수분흐름의 모델링)

  • 정상옥
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1988.07a
    • /
    • pp.85-92
    • /
    • 1988
  • A model for the transient one-dimensional moisture movement in the saturated-unsaturated zone using a finite difference method is developed. Hysteresis in the soil water retention is incorporated. The model considers layered geologic formations. Monte Carlo simulation, together with the nearest neighbor model is used. Outputs of the model include pressure head, water content, and the water table elevation. Two Monte Carlo simulations of 100 realizations each are made for a 12-day simulation period with different input values. The simulation results show that the S.D. of the outputs increases with an increase in the input, the S.D. of the log K$$. The model is applied to predict a long term water table fluctuation, and the predicted water table agress well with the observed one.

  • PDF

Delay Time Estimation of Recharge in the Hancheon Watershed, Jeju Island (제주도 한천유역의 함양 지체시간 산정)

  • Kim, Nam-Won;Na, Hanna;Chung, Il-Moon
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.605-613
    • /
    • 2014
  • In this work, the delay time for groundwater recharge was estimated by comparing simulated recharges by means of SWAT(Soil and Water Assessment Tool) model and WTF(Water Table Fluctuation) method. The delay time for groundwater recharge means that the time when the water from rainfall travelled through vadose zone just after getting out of soil zone bottom. As measuring this delay time is almost impossible, we used to compare the estimated values from modeling(SWAT) and analytic method(WTF). The test site is Hancheon watershed which has 8 groundwater measurement stations. The results show that the altitude has a linear relationship with the estimated delay time values. To validate these results, we conducted corelation analysis between transformed groundwater levels and observed ones. The results showed that computed groundwater levels have good corelation($R^2$=0.97, 0.87, respectively). The estimated delay time would be used for the groundwater behaviour characteristics in vadose zone. As recharge rates vary according to the height, the delay time is thought to be an import variable for the proper groundwater recharge estimation.

Hydrogeological Characteristics and Groundwater Table Fluctuation of Dongrae Hot Spring (동래온천의 수리지질학적 특성과 수위변화)

  • Lee, Dong Young;Lim, Jeong Ung
    • Economic and Environmental Geology
    • /
    • v.28 no.2
    • /
    • pp.165-176
    • /
    • 1995
  • Dongrae is one of the most famous hot spring resort area in the Republic of Korea. The water temperature ranges $50^{\circ}C{\sim}66$. The chemical composition of the thermal water is quite different from normal groundwater. $Na^+$ and $Cl^-$ are the main components, measured more than 75%, $Ca^{+{+}}$ is contained about 22% and the other ions such as $SO_4$ or $HCO_3$ are the minor components. The heat source is uprising along the fracture zone of granite which is indicated as a subsurface high temperature belt. During the research period of 1991~1992, the groundwater table was lowered down to the depth of about 100 m according to continuous increase of daily use of thermal water. The groundwater table was fluctuated with an amplitude of day, weak or seasion. The groundwater table was the lowest at 18:00 h in a day and also lowest at the weekend for the week period. There was a relavent relationship between drawdown and the amount of thermal water use on a long term base. To protect such a rapid drawdown of groundwater table, Dongrae resort area is now asked to take strong municipal control for the daily use of thermal water.

  • PDF

Periodic Variation of Water Table at a Headwater Catchment in the Gwangneung Ecohydrological Research Site (광릉 수문연구부지 내 원두부 소유역에서 지하수면의 주기적 변동 특성)

  • Kim, Yu-Lee;Woo, Nam-C.;Lee, Sang-Duck;Hong, Tae-Kyung;Kim, Joon
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.43-51
    • /
    • 2008
  • Periodic fluctuation of water levels were analyzed for their causes and effects on groundwater movement. Groundwater levels were monitored from two shallow monitoring wells, G1 and G4, located at a headwater catchment in the Gwangneung Ecohydrological Research Site using pressure transducers with automatic data-loggers by five-minute interval from February to October, 2006. The water table fluctuates on a daily basis with a clear diurnal variation, and the fluctuation amplitude increases with time from the winter to the summer. Results from spectral analysis of water-level data show periodic variations in 24.38 hour and in 12.19 hour, indicating $P_1$ diurnal and $L_2$ semidiurnal tidal components, respectively. The diurnal component of the water level in summer has greater power than that in winter, implying that the water table is affected not only by earth tides, but also by evapotranspiration. Right after rain stops, the power of diurnal component of the water level decreases, indicating that evapotranspiration influences significantly diurnal periodicity. The effects of diurnal and semidiurnal components of the water level range from 0.4 to 4.2 cm and from 0.2 to 0.7 cm, respectively.

Simulation for application of pumping-and-treatment system to the recovery of non-aqueous phase liquids (NAPLs) at and below the water table (토양의 포화지대에 분포하는 고밀도비수상액체(DNAPL)와 저밀도비수상액체(LNAPL)의 펌핑 제거공정에 대한 모사)

  • 김주형;이종협
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.51-61
    • /
    • 1997
  • The objective of this study is to evaluate the feasibility of Pumping-and-Treatment system (PTS) for remediation of the saturated zones contaminated with NAPLs. A simulation is carried out for the removal of DNAPLs (denser-than-water non-aqueous phase liquids) and LNAPLS (lighter-than-water non-aqueous phase liquids) distributing at and below the water table. In the study, LNAPL and DNAPL are assumed to be n-hexane and 1,1-dichloroacetone, respectively. The model system studied consists of four heterogeneous soil layers with different permeabilities. Groundwater flows through the bottom layer and a pumping well is located under the initial water table. The time-driven deformation of the water table and removal efficiency of contaminants are estimated after vacuum application to the inlet of the well. In the calculation, FVM (Finite Volumetric Method) with SIMPLEC algorithm is applied. Results show that removal efficiencies of both DNAPL and LNAPL are negligible for the first 5 days after the PTS operation. However, when the cone-shape water table is formed around the inlet of the pumping well, the rapid removal rate is obtained since NAPLs migrate rapidly through the curvature of the water table. The removal efficiency of DNAPL is estimated to be higher than that of LNAPL due to the gravity. The results also show that the fluctuation or cone-shaped depression of the water table enhances the removal efficiency of NAPLs in saturated zones. The simulation results could provide a basis of the PTS design for the removal of NAPLs in saturated zones.

  • PDF

Status of Exploitable Groundwater Estimations in Korea (우리나라 지하수 개발가능량 산정의 현황과 전망)

  • Chung, Il-Moon;Kim, Jitae;Lee, Jeongwoo;Chang, Sun Woo
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.403-412
    • /
    • 2015
  • We summarize the status of exploitable groundwater reserves in Korea based on reports of the National Basic Groundwater Plan, and review methods for estimating groundwater recharge rates, as recharge is a key factor in the estimation of exploitable groundwater reserves. We also outline the various methods used to assess exploitable groundwater reserves in previous groundwater investigation reports. Regarding advancements in the estimation of exploitable groundwater, we recommend that enhanced estimation methodologies (e.g., the water balance method and the advanced water table fluctuation method) and sustainable groundwater management concepts be adopted in the near future.

Hydrogeological Properties Around Han River from Water Level Data (한강의 수리시스템과 한강변 대수층의 수리지질 특성)

  • 김윤영;이강근
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.1
    • /
    • pp.33-41
    • /
    • 1999
  • Time-lag and amplitudes of the fluctuation of groundwater level are used to determine hydraulic parameters around Han River. The groundwater level at observation wells fluctuates between highest and lowest responding to the Han River level. The factors affecting the groundwater fluctuation are examined. The transmisivity of the Han River alluvium calculated from the measured water table fluctuations measured ranges from 9.39${\times}$10$^1$to 4.02${\times}$10$^3$㎡/day. Based on the hydrogeological data along the river sides, the flow characteristics of groundwater for water level fluctuations were simulated using a ground water flow model MODFLOW.

  • PDF

Minimum Entropy Deconvolution을 이용한 지하수 상대 재충진양의 시계열 추정법

  • 김태희;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.574-578
    • /
    • 2003
  • There are so many methods to estimate the groundwater recharge. These methods can be categorized into four groups. First groupis related to the water balance analysis, second group is concerned with baseflow/springflow recession, and third group is interested in some types of tracers; environmental tracers and/or temperature profile. The limitation of these types of methods is that the estimated results of recharge are presented in the form of an average over some time period. Forth group has a little different approach. They use the time series data of hydraulic head and specific yield evaluated from field test, and the results of estimation are described in the sequential form. But their approach has a serious problem. The estimated results in forth typeof methods are generally underestimated because they cannot consider the discharge phase of water table fluctuation coupled with the recharge phase. Ketchum el. at. (2000) proposed calibrated method, considering recharge- and discharge-coupled water table fluctuation. But the dischargeis considered just as the areal average with discharge rate. On the other hand, there are many methods to estimate the source wavelet with observed data set in geophysics/signal processing and geophysical methods are rarely applied to the estimation of groundwater recharge. The purpose this study is the evaluation of the applicability of one of the geophysical method in the estimation of sequential recharge rate. The applied geophysical method is called minimum entropy deconvolution (MED). For this purpose, numerical modeling with linearized Boussinesq equation was applied. Using the synthesized hydraulic head through the numerical modeling, the relative sequenceof recharge is calculated inversely. Estimated results are very concordant with the applied recharge sequence. Cross-correlations between applied recharge sequence and the estimated results are above 0.985 in all study cases. Through the numerical test, the availability of MED in the estimation of the recharge sequence to groundwater was investigated

  • PDF

Effects of Insulation Layer upon the Thermal Behavior of Linear Motors

  • Eun, In-Ung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.896-905
    • /
    • 2003
  • A linear motor has many advantages next to conventional feed mechanisms: high transitional speed and acceleration, high control performance, and good positioning accuracy at high speed. Through the omission of a power transfer element, the linear motor shows no wear and no backlash, has a long lifetime, and is easy to assemble. A disadvantage of the linear motor is low efficiency and resultant high-temperature rise in itself and neighboring structures during operation. This paper presents the thermal behavior of the linear motor as a feed mechanism in machine tools. To improve the thermal behavior, an insulation layer is used. By placing the insulation layer between the primary part and the machine table, both the temperature difference and the temperature fluctuation in the machine table due to a varying motor load are reduced.