• Title/Summary/Keyword: Water-immersion

Search Result 602, Processing Time 0.026 seconds

The Effects of Automatically Controlled Rotating Acupuncture on Thermal Allodynia in a Rat Model of Neuropathic Pain: Mediation by Endogenous Opioid System (신경병증성 통증에 대한 자동염전침의 진통효과 및 opioid 기전)

  • Park, Jung-Hyuk;Kim, Sun-Kwang;Na, Hyo-Suk;Moon, Hak-Jin;Min, Byung-Il;Kim, Ki-Hong;Rhim, Sung-Soo;Lee, Soon-Geul;Lee, Sang-Hoon
    • Journal of Acupuncture Research
    • /
    • v.23 no.5
    • /
    • pp.23-29
    • /
    • 2006
  • Objectives : The present study was conducted to evaluate the effects of automatically controlled rotating acupuncture (ACRA) on thermal allodynia in neuropathic pain rats, and to examine whether the endogenous opioid system mediates the effects of ACRA. Methods : For the neuropathic surgery, the right superior caudal trunk was resected at the level between S1 and S2 spinal nerves innervating the tail. Two weeks after the nerve injury, ACRA stimulation with 4 different stimulation conditions (i.e., angle and frequency of rotation: 90o+1Hz, 90o+1/4Hz, 360o+/1Hz, and 360o+1/4Hz) was delivered to the Zusanli (ST36) acupoint for 15 min. The behavioral signs of thermal allodynia were evaluated by the tail immersion test (i.e., immersing the tail in cold $(4^{\circ}C)$ or warm $(4^{\circ}C)$ water and measuring the latency to an abrupt tail movement) before and after the stimulation. In an additional set of experiments, we examined the effects of naloxone (opioid Results : ACRA stimulations under all of the conditions above significantly relieved thermal antagonist, 2mg/kg, i.p.) on the action of ACRA stimulation. allodynia. There is no difference in the anti-allodynic effects among the 4 stimulation conditions. In addition, the effect of ACRA on thermal allodynia was reversed by naloxone pretreatment. Conclusion : These results indicate that ACRA stimulations have relieving effects on thermal allodynia in neuropathic pain rats, irrespective of stimulation parameters, and that this is mediated by the endogenous opioid system.

  • PDF

Antioxidant Activities of Ostrich Fern by Different Extraction Methods and Solvents (추출방법 및 용매에 따른 청나래고사리의 항산화 활성)

  • Shin, So-Lim;Lee, Cheol-Hee
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.56-61
    • /
    • 2011
  • This study was performed to investigate effective extract conditions in fronds of the Ostrich fern (Matteuccia struthiopteris) to increase antioxidant compound contents and antioxidant capacity. Powder (1 g) of lyophilizated fronds were mixed with 3 kinds of solvents (MeOH, 80% EtOH and water). Extractions were carried out using not only immersion (room temp.), heating ($60^{\circ}C$) and stirring (200rpm) for 6 hr, but also through sonication in a 42 kHz ultrasonic bath for 15, 30 and 45 min. Extracts were filtrated and measured for contents of soluble solids (SS), total polyphenols (TP; tannic acid as a standard) and total flavonoids (TF; Naringin as a standard). Antioxidant activity was expressed as $RC_{50}$ for DPPH and ABTS radical scavenging. SS (0.317 $g{\cdot}g^{-1}$ db), TP (70.90 $mg{\cdot}g^{-1}$ db) and TF (41.53 $mg{\cdot}g^{-1}$ db) contents reached their highest levels when 30 minute sonication extraction with 80% EtOH was performed, and the highest DPPH and ABTS scavenging activity was observed in the same extraction conditions ($RC_{50}$=0.14 $mg{\cdot}ml^{-1}$ and 0.09 $mg{\cdot}ml^{-1}$, respectively). From the present investigation, it can be concluded that fronds of the ostrich fern can be used as a natural material for antioxidants, and sonication for 15-30 min with 80% EtOH is an ideal extraction method for increasing their antioxidant effects and saving extraction time.

Geotechnical Characterization of Artificial Aggregate made from Recycled Resources of Gwangyang Bay Area as a Drainage Material (광양만권 순환자원으로 제조된 배수재용 인공골재의 지반공학적 특성)

  • Kim, Youngsang;Kim, Wonbong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.49-57
    • /
    • 2013
  • Recently, recycling of the industrial by-products has been an important issue of the Yeosu bay, where large industrial complex is located. Major industrial by-products which are produced from Yeosu industrial complex area are phosphogypsum and flyash, which are about 82% and 10% of the 1.6 million tons industrial by-products. Moreover since the Yeosu industrial complex is located at seaside, phosphogypsum has been pointed as cause of serious environmental contaminant from the regional society. Therefore recycling study can't be delayed anymore. In this paper, artificial aggregate was manufactured by non-sintering process from industrial byproducts - e.g., phosphogypsum and slag - as a geotechnical drainage material. To show the feasibility of the artificial aggregate as a geotechnical drainage material, geotechnical experiments including particle size analysis, permeability test, and large scale direct shear test were carried out. Test results show that the permeability of the artificial aggregates range from $6.94{\times}10^{-1}cm/sec$ to $8.86{\times}10^{-1}cm/sec$, which is much larger value than those are required for the drainage material from the construction specification in Korea, and the friction angle of the artificial aggregate is as large as that of sand in water immersion conditions. From the test results, it was concluded that artificial aggregate made from industrial by-products can be used successfully as a geotechnical drainage material.

A Study on the Resistance of Stress Corrosion Cracking due to Expansion Methods for Steam Generator Tubes in Nuclear Power Plants (원전 증기발생기 전열관의 확관방법에 따른 응력부식균열 저항성 연구)

  • Kim, Young Kyu;Song, Myung Ho
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.149-157
    • /
    • 2014
  • The steam generator tubes of nuclear power plants have various types of corrosion failures during the plant operation. The stress corrosion cracking which occurs on the outer surface of tube is called the secondary side stress corrosion cracking and mainly occurs in the expansion-transition area of tube. The causes are the concentration of impurities by the sludge pile-up related to the geometry of its region and the residual stress by tube expansion in the process of steam generator manufacturing. Especially the directionality and sizes of residual stresses are differed according to the tube expansion methods and the direction and the frequency of tube cracks depend on their characteristics. In bases on the plant experiences, it is notified that circumferential cracks of tubes expanded with explosive expansion method are dominantly occurred compared to those of tubes done with hydraulic expansion one. Therefore in this study, according to tube expansion methods frequencies and sizes of tube cracks with specific direction are compared by means of accelerated immersion test and also the crack morphology and the specific chemicals from water-chemistry environment are observed through the fracture surface examination.

Studies on the browning inhibition of yam(Dioscorea aimadoimo) during hot air dehydration (단마(Dioscorea aimadoimo)의 열풍건조 시 갈변 억제 방안 연구)

  • Chung, Yong-Yul;Jeong, Woo-Sik;Chung, Shin-Kyo
    • Applied Biological Chemistry
    • /
    • v.39 no.5
    • /
    • pp.384-388
    • /
    • 1996
  • This research was conducted to investigate the effective methods for browning inhibition on yam (Dioscorea aimadeimo) during dehydration by physical and chemical pretreatments. Moisture, crude protein, crude fiber and N-free extract contents of yam were 81.17%, 1.43%, 0.29% and 15.81%, respectively. Yams were sliced to 0.5 cm thickness and placed to single and poly layer in plastic tray, and then changes of their weights were measured during air dehydration at $50^{\circ}C,\;65^{\circ}C,\;and\;80^{\circ}C$. The dehydration time reaching to optimum moisture level for the pulverization of the yam slices were 10, 6, 3 hours(single layered) and 12, 7, 5 hours(multi layered) at the respective temperature. To inhibit browning at $80^{\circ}C$ air dehydration, water and steam blanching, microwave treatment effects were investigated on yam slices for 30 sec. and 60 sec. Steam blanching for 30 sec. was comparatively effective to inhibit browning of yam slices. Yam slices were immersed in single and combined browning inhibitor solutions and evaluated for browing degree during dehydration by the values of Hunter L, a, b and ${\Delta}E$. The most effective pretreatment to inhibit browning of yam slices was immersion In the solution containing 500 ppm of citric acid and 1000 ppm of cysteine for 1 min.

  • PDF

A Study on Durability of Concrete According to Mix Condition by Marine Environment Exposure Experiment (해양환경폭로실험을 통한 배합조건별 콘크리트의 내구성에 관한 연구)

  • Jo, Young-Jin;Choi, Byung-Wook;Choi, Jae-Seok;Jung, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4542-4551
    • /
    • 2013
  • Recently, much attention has focused on the study of eco-friendly concrete using recycled by-products for protecting marine ecosystem and durability of concrete exposed to marine condition. This study evaluated the durabilities of 4 different type of concrete mixtures(Control, Marine, Porous, New slag) with the seawater resistance by marine environment exposure experiment and freeze-thaw resistance, resistance to chloride ion penetration considering severe deterioration environment. In this study, we conducted seawater resistance using compressive strength according to the age(7/28/56 days) of specimen and curing conditions(standard(fresh water), tidal, immersion, artificial seawater). The results show that compressive strength of concrete exposed to marine environment exposure condition was lower than those of the standard curing condition. Also, compressive strength of New slag using eco-friendly materials for protecting marine ecosystem was lower than those of other concretes, there is need to improve the performance of New slag. The results for freeze-thaw resistance showed that all mixtures have excellent, but the Porous and New slag were lower than others. Also, the more improved resistance to chloride ion penetration than those of the Marine was measured in the New slag regardless of curing condition.

Corrosion Behavior of Cathodic Electrodeposited Epoxy Based Coating for Automotive Primer (자동차용 에폭시계 양이온형 전착도료의 내식성에 대한 연구)

  • Lee, Soung-Youb;Lee, Jung-Mu;Kwag, Sam-Tag;Moon, Myung-Jun;Suh, Cha-Soo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.250-256
    • /
    • 2005
  • Coating appearance is the most important problem in automotive industry. To increase the coating appearance quality, the corrosion resistance and the coating adhesion on metal substrates must be basically solved. The phosphating film made by the pretreatment of metal substrate is important factor to increase the coating adhesion. During the cathodic electrodeposition, the pH at the cathode surface increases up to about 12. In such a highly alkaline condition, the dissolution of metal substrate and phosphate film occurs. These phenomena result in the decrease of the bonding strength between the phosphating film and the substrate. Generally, the structure of zinc phosphating film is hopeite or phosphophyllite. It has been known that the phosphophyllite film contains better corrosion resistance and paint adhesion for hot water immersion test because of the decrease of dissolving amount of both metal substrate and phosphating film during the cathodic electrodeposition. It is found that the addition of Ni and Mn composition increase P-ratio and then can improve the paint adhesion on metal surface and the corrosion resistance.

Characteristics of Eco-friendly Porous Concrete for Seawater Purification Using By-Products of Steel Industry (철강산업 부산물을 활용한 해수정화용 친환경 다공질콘크리트의 특성)

  • Han, Woonwoo;Lee, Byungjae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • As of 2018, Steel slag was generated approximately 24.23 million tons. Howeve, except blast furnace slag, steel slag is a typical by-product which does not have a clearly defined purpose in recycling. Thus, countries around the world are putting great efforts into developing a purpose for the recycling of steel slag. The vast habitat foundation of marine life has been destroyed due to recent reckless marine development and environment pollution, resulting in intensification of the decline of marine resources, and a solution to this issue is imperative. In order to propose a method to recycle large amounts of by-product slag into a material that can serve as an alternative to natural aggregate, the engineering properties and applicability for each mixing factor of environment friendly porous concrete as a material for the composition of seawater purification were in this study. Regarding the nutrient elution properties, it was clear that the nutrients continuously flowed out up to an immersion time by 8 months in natural seawater; the nitrogenous fertilizer displayed excellent elution properties in this regard.

The Effect of Oral Rinsing Solution on the Color Stability, Surface Microhardness and Surface Roughness Change of Composite Resin (구강양치용액이 복합레진의 색조 안정성과 표면미세경도 및 표면조도에 미치는 영향)

  • Lee, Hye-Jin;Kim, Min-Young;Yang, Dal-Nim
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.7
    • /
    • pp.159-167
    • /
    • 2019
  • This study aimed to evaluate the effects of oral rinsing solution on the color stability, surface microhardness and surface roughness change of composite resin. In this in-vitro study, 80 disc-shaped specimens were fabricated of Filtek P60 and Filtek Z250(A2 shade). The samples of each group were randomly divided into eight subgroups (n=10). The baseline color values ($L^*$, $a^*$, $b^*$) of each specimen were measured according to CIE LAB system using a colorimeter. After baseline color measurements, the control samples were immersed in distilled water and the test groups were immersed colorless, green and purple mouthrinses three times a day for thirty minutes. This process was repeated for two weeks. Green and purple oral rinsing solutions displayed color, microhardness and roughness change of all composite resin after immersion in the mouthrinses. Therefore, prescription of oral rinsing solution for a minimum of two weeks is a common practice, which may cause discoloration of aesthetic composite restorations of patients.

A Study on the Frictional Characteristics of Fiber Reinforced Composites under Corrosive Environment (부식 환경 하에서의 섬유강화복합재료의 마찰 및 마모 특성 연구)

  • Choong-Yong Park;Dong-Hyun Park;Soo-Jeong Park;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.37-41
    • /
    • 2023
  • The treated water inside the ballast electrolytic cell creates a highly alkaline atmosphere due to hydroxide generated at the DSA(Dimension Stable Anode) electrode during electrolysis. In this study, a composite material that can replace the weakness of the PE-coated steel pipe used in the existing ballast pipe was prepared. The test samples are BRE(Basalt fiber reinforced epoxy), BRP(Basalt fiber reinforced unsaturated polyester), GRE(Glass fiber reinforced epoxy), and GRP(Glass fiber reinforced unsaturated polyester). And then it was immersed in NaOH for 720 hours. The friction test of each specimen was conducted. The Friction coefficient analysis according to material friction depth and interfacial adhesion behavior between resin and fiber were analyzed. As a result, the mechanism of interfacial separation between resin and fiber could be analyzed. In the case of the unsaturated polyester resin with low interfacial bonding strength the longer the immersion time in the alkaline solution, the faster the internal deterioration caused by the deterioration that started from the surface, resulting in a decrease in the friction coefficient. It is hoped that this study will help to understand the degradation behavior of composite materials immersed in various chemical solutions such as NaOH, acid, and sodium hypochlorite in the future.