Kim, Jae-Woo;Myers, Deland J.;Brown, Robert C.;Kuo, Monlin
Journal of the Korean Wood Science and Technology
/
v.35
no.2
/
pp.51-60
/
2007
In this study, the possibility of using pyrolysis oil as wood adhesives was explored. Especially, adhesives were formulated by reacting pyrolysis oil and formaldehyde and also partially replacing phenol with pyrolysis oil in phenol-formaldehyde (PF) adhesive and soy hydrolizate/PF adhesive formulation. The pine wood was fast pyrolyized and the oils were obtained from a series of condensers in the pyrolysis system. The oils from each condenser were first reacted with formaldehyde to explore potential use of the oil itself as adhesive. The lap-shear bond strength test results indicated that the oil itself could be polymerized and form bonds between wood adherends. The oils from each condenser were then mixed together and used as partial replacement of phenol (25, 33, and 50% by weight) in phenol-formaldehyde adhesive. The bond strength of the oil containing PF adhesives was decreased as percent phenol replacement level increased. However, no significant difference was found between 25 and 33% of phenol replacement level. The oil-contained PF resins at 25, 33, and 50% phenol replacement level with different NaOH/Phenol (Pyrolysis oil) molar ratio were further formulated with soy hydrolizate to make soy hydrolizate/pyrolysis oil-phenol formaldehyde adhesive at 6:4 weight (wt) ratio and used for fiberboard manufacturing. Surface internal bond strength (IB) of the boards bonded with 33% replacement at 0.3 NaOH/Phenol (Pyrolysis oil) molar ratio performed better than other replacement levels and molar ratios. Thickness swelling after 24 hr cold water soaking and after 2 hr in boiling water was increased as % replacement of pyrolysis oil increased.
Laboratory experiments were performed to investigate oxidation system using ozone and hydrogen peroxide for treating water contaminated with phenol. We were able to greatly improve the oxidation efficiency of the aqueous phenol using hydrogen peroxide and ozone. Two methods were compared and analyzed in this study. In the consequence through the methods, we concluded that the $O_3/UV$ is superior to the hydrogen the results. The decomposition efficiency of aqueous phenol by $H_2O_2$. was exceeded at 83.3% in the concentration of phenol, 5, 15, 25 ppm, respectively. The rate of decomposition reaction by $H_2O_2$. was very slow. In the occasion of the fractional life, it was determined the value that $1.61{\times}10^{-5}(l/mol)^{1.172}sec^{-1}$, $3.75{\times}10^{-5}(l/mol)^{0.792}sec^{-1}$, $4.11{\times}10^{-5}(l/mol)^{1.782}sec^{-1}$. The rate of decomposition reaction of aqueous phenol by $O_3$ was fast compared to the $H_2O_2$. We concluded that the $O_3$ method is useful with the consideration of the reaction time 30 minutes. In the occasion of the fractional life, it was determined the value that $1.094{\times}10^{-4}(l/mol)^{0.933}sec^{-1}$, $2.1{\times}10^{-4}(l/mol)^{0.842}sec^{-1}$, $7.22{\times}10^{-4}(l/mol)^{1.332}sec^{-1}$.
Solid and liquid phase peroxidases were extracted from Chinese cabbage roots by using commercial juicer in order to use peroxidases from agricultural waste for industrial applications. Since peroxidases are distributed into 66% in liquid (juice) and 34% in solid phase (pulp), enzymes from both phases were applied to investigate the enzymatic removal of phenol from waste water. After contacting 150 ppm Phenol solution with liquid phase enzyme (1,800 unit/$\ell$) for 3 hours in a batch stirred reactor, 96% of phenol could be removed through polymerization and precipitation. Also, phenol could be removed from initial 120ppm to 5ppm by applying solid phase enzyme in an air lift reactor ($600 unit/\ell$). Almost equivalent efficiencies of phenol removal were observed between two systems, even though only one third of the enzymes in batch stirred reactor was applied in airlift reactor. The possible reason for this phenomenon is because peroxidases exist as immobilized forms in solid phase.
With the rapid industrialization, an ever-increasing quantity and kind of new organic compounds pose environmental problems due to their toxicity and physiological effect. However, research on the biodegradation of these compounds under anaerobic condition is very limited inspite of its efficiency and economical advantage. In this research, the pH effect on the ring cleavage of phenol under anaerobic condition was investigated, and the theory of phase separation was applied to the degradation of phenol for investigating the role of acidogenic bacteria. Results, obtained from biochemical methane potential(BMP) assay for 15.5 days of incubation, showed that acidic condition was more desirable for phenol degradation than alkaline condition. By both unacclimated methanogenic granular sludge and two mixed cultures, phenol was completely removed within six weeks of incubation with a gas conversion rate of over 86% of theoretical one. However, phenol was not degraded by unacclimated acidogenic culture, and thus it is considered as a syntrophic substrate. In case of phase separated biochemical methane potential(PSBMP) assay, in which acidogenic and methanogenic culture were seeded separately and consecutively, those that had been subjected to normal acidogens for 3 to 4 weeks showed higher gas production than those seeded with sterile or frozen culture.
Degradations of phenol and chlorinated compounds mixtures were studied with ultrasound of 20 kHz and 0.57, 1.14 W/mL. In presence of carbon tetrachloride (CT), degradation rate of phenol is faster than chloroform (CF), dichloromethane (DCM) and phenol solution. It is due to that CT generates of free chlorine (HOCl and $OCl^-$) from the sonochemical degradation and plays a role of hydrogen atom scavenger. CF and DCM are react with free chlorine, so amount of free chlorine is smaller than CT solution. The degradation rates of chlorinated compounds decreased with co-presence of phenol in the solution due to the distribution ultrasonic energy to both compounds. The measured chloride ion was lower than the theoretical concentration assuming complete degradation. This means not all the contaminants destructed went through complete degradation.
An analytical method was developed for the determination of phenol (P) and the seven substituted phenols in water samples and fish tissue samples collected from three streams located in eastern Gangwon State in spring and summer. The phenols were extracted and then derivatized to phenyl acetates using acetic anhydride. The derivatives were subsequently identified and quantified using gas chromatography coupled with mass spectrometry. P and 4-nitrophenol (4NP) were found at relatively high levels in water, ranging from below the method detection limit (MDL) to 3.32 ㎍/L and from < MDL to 4.91 ㎍/L, respectively. P and 4NP were also the dominant compounds in the fish tissue, ranging from < MDL to 407 ㎍/kg and from < MDL to 870 ㎍/kg, respectively. Phenol concentrations were significantly higher in spring than in summer. The ecological risk quotient calculated for P was higher than 4NP but not high enough to pose any risk of adverse effects to fish health.
Carbolic Acid which is called phenol is one of the important starting and/or intermediate materials in various industrial processes. However, its excessive release into environment poses a threat to living organisms, as it is a highly carcinogens and hazardous pollutant even at the very low concentration. Thus removal of phenol from polluted environments is very crucial for sustainable remediation process. We developed a low cost adsorption method for separating phenol from a model aqueous solution. The phenol adsorption was studied using two adsorbents i.e., Amber lite XAD-16 and Amber lite XAD-7 HP with a constant amount of resin 0.1 g at varying aqueous phenol concentrations ($50-200mgL^{-1}$) at room temperature. We compared the efficacy of two phenol adsorbents for removing higher phenol concentrations from the media. We investigated equilibrium and kinetics studies of phenol adsorption employing Freundlich, Temkin and Langmuir isotherms. Amberlite XAD-16 performed better than Amberlite XAD-7 HP in terms of phenol removal efficiency that amounted to 95.52%. Pseudo second order model was highly fitted for both of the adsorption systems. The coefficient of determination ($R^2$) with Langmuir isotherm was found to be 0.98 for Amberlite XAD-7 HP. However, Freundlich isotherm showed $R^2$ value of 0.95 for Amberlite XAD-16, indicating that both isotherms could be described for the isotherms on XAD-7 HP and Amberlite XAD-16, respectively.
Journal of Korea Technical Association of The Pulp and Paper Industry
/
v.44
no.4
/
pp.77-84
/
2012
The lithographic process depends on a satisfactory ink-in-water emulsion being formed during printing and the speed of wet presses makes the choice of fountain solution vitally important as the ink and fount must react quickly to form a stable emulsion. Ink and water come into contact with each other on the rolls of the press and are forced together in the roll nips. The water is not soluble in the ink since it is slightly fat. Instead, an emulsion is formed, a heterogeneous mass consisting of small water drops mixed into the ink, if the water feed is too great. This emulsification can affect the properties of an off-set ink and negatively affect the printability. So we investigated the effects of the emulsification of phenol free heat-set ink and existing heat-set ink on printed quality, such as amount of ink transfer, printed density, print-through and uniformity. We used Duke emulsification tester for the emulsification of inks, and used IGT printability tester for printed quality. The printed quality were measured by densitometer and were evaluated by the image analysis system. Compared to conventional printing ink, phenol-free ink showed better results of the printability at the emulsification.
Increasing active sites and enhancing electric conductivity are critical factors to improve sensing performance toward phenol. Herein, Ni nanoparticle was successfully anchored on acidified multiwalled carbon nanotube (a-MWCNT) surface by electroless plating technique to avoid Ni nanoparticle agglomeration and guarantee high conductivity. The crystal structure, phase composition and surface morphology were characterized by XRD, SEM and TEM measurement. The as-prepared Ni/a-MWCNT nanohybrid was immobilized onto glassy carbon electrode (GCE) surface for constructing phenol sensor. The phenol sensing performance indicated that Ni/a-MWCNT/GCE exhibited an amazing detection performance with rapid response time of 4 s, a relatively wide detection range from 0.01 mM to 0.48 mM, a detection limit of $7.07{\mu}M$ and high sensitivity of $566.2{\mu}A\;mM^{-1}\;cm^{-2}$. The superior selectivity, reproducibility, stability and applicability in real sample of Ni/a-MWCNT/GCE endowed it with potential application in discharged wastewater.
The effects were examined from several conditions of $TiO_2$ photocatalysis reaction to phenols degradation by changing it's reacting conditions such as phenol concentration, pH, $TiO_2$ concentration, $H_2O_2$ concentration, flow rate, and intensity of ultraviolet rays. Phenol degradation was more efficient in low concentration of phenol, neutral pH. Phenol degradation appeared to increase as concentration of $TiO_2$ photocatalyst, that of $H_2O_2$ and intensity of ultraviolet rays increased. As $TiO_2$ dosage increased, initial rate constant k linearly increased. When $H_2O_2$ was injected more than optimum, phenol removal rate didn't increase in proportional to the change of $H_2O_2$ concentration as OH radicals was being consumed. When flow rate is less than $4.75m^3/m^2$ day, phenol removal efficiency appeared to decrease as ultraviolet rays transmission rate becomes low by $TiO_2$ suspension coated in photo reaction column. Meanwhile, initial rate constant according to light intensity change in less than $25mW/cm^2$ appeared to be in proportion to light intensity ($mW/cm^2$) Removal efficiency decreased about 12% after 180 minutes of reaction time while showed stable removal efficiency of 100% after 300 minutes when using regenerated $TiO_2$.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.