• 제목/요약/키워드: Water vapor supply system

검색결과 18건 처리시간 0.027초

자원순환형 소각열 이용시스템에 관한 평가 (Evaluation on Utilizing Systems of Incineration Heat as Resource cycling Type)

  • 정용현
    • 한국환경과학회지
    • /
    • 제12권4호
    • /
    • pp.503-510
    • /
    • 2003
  • How to plan the energy system is one of the keys f3r constructing the Environment -Friendly City. for this reason, a great number of surveys for utilizing unused energy have conducted by a planner. In regard to unused energy, the heat from incineration plants classify as a unused energy having high-exergy-energy. From this point of view, It is studied about the plant systems providing heat to district heating & cooling(D.H.C) and producing electric power. It is divided four system models as system I (10K [kgf/cm$^2$) vapor as outlet of boiler, supply far 10K vapor and return to 60$^{\circ}C$ as supply condition of district heating), system II (30 K vapor as outlet of boiler, supply for 5t vapor and return to 60f as supply condition of district heating), system 111 (30 K vapor as outlet of boiler, supply for 85$^{\circ}C$ hot water and return to 60$^{\circ}C$ as supply condition of district heating), system IV (30 K vapor as outlet of boiler, supply for 47$^{\circ}C$ hot water and return to 40t as supply condition of district heating). The results from the upper condition of four system, System II got a proper on economical benefits and system IV calculated as benefiting on energy saving effects, and suggest indifference curve as the total evaluation method of both economical benefits and energy saving.

공기와 이산화탄소 가스에 수분공급을 위한 연구 (Water Vapor Supply Study for Air and Carbon dioxide)

  • 이택홍;박태성;김태완;노재현;강영진;이승용
    • 한국수소및신에너지학회논문집
    • /
    • 제25권1호
    • /
    • pp.72-78
    • /
    • 2014
  • The study has been designed to develop water vapor supply for semiconductor industry, industrial gas manufacturing, impurities analysis, and fuel cell. Water concentration in air reached $1019{\mu}mol/mol$ at dew temp ($-20^{\circ}C$) and water concentration in CO2 reached $127{\mu}mol/mol$ at dew temp ($-40^{\circ}C$. Carbon dioxide needs more wet gas than air because interaction potential of carbon dioxide shows more strong attraction than air.

과도수리현상 해석과 실증을 통한 펌프장 안정성 확보방안 (A Safety Plan for the Pumping Station by Hydraulic Transient Analysis and Demonstration)

  • 라병필;김진만;이동근;박종호;김경엽
    • 한국유체기계학회 논문집
    • /
    • 제8권5호
    • /
    • pp.22-28
    • /
    • 2005
  • As the water supply facilities are recently getting larger, the domestic waterworks become multi-regional water supply system. Large water supply facilities generally consist of the intake pumping station, water treatment plant and water supply/distribution facilities. Although the pumping stations and the pipeline systems are used to pump up water, it often happens pipeline damage and flooding accident by the water hammer. In this paper, the intake pumping station is guaranteed by both the computer simulation and the field test analysis. This study is contributed to the safe operation program for the pumping station in which results of the adjustment on the safety plan of the pumping station, the air valve and the valve closing time.

과도수리현상 해석과 실증을 통한 펌프장 안정성 확보방안 (The Plan of Safety for Pump Station through Hydraulic Transient Analysis & Demonstration)

  • 라병필;김진만;박종호;김경엽
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.199-207
    • /
    • 2004
  • Water supply facilities are recently getting larger according as domestic waterworks become multi regional water supply system. Large water supply facilities generally consist of the intake pumping station, water treatment station and water supply & distribution facilities. Although pumping stations and pipeline systems are used to pump up water, it often happens pipeline damage and flooding accident by the water hammer. As a result of this study, a pumping station is guaranteed by the computer simulation and field test analysis. Therefore these are contributed safety operation in pumping station through adjustment of the pumping station safety plan, air valve and valve closing time.

  • PDF

수(水)반응성 고체추진제를 이용한 수중고속램제트엔진 시스템 개념 설계 (Concept Design of Hydro Reactive Solid Propellant for Underwater High Speed Ramjet Engine System)

  • 채재우;심주현;곽용환;구형준
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.121-131
    • /
    • 2005
  • 고속 수중 어뢰의 추진을 위해 외부에서 공급 받은 물과 증기로 연소 하는 수(水)반응성 연료를 이용하고 있다. 수(水)반응성 연료의 주성분은 마그네슘과 알루미늄처럼 반응성이 큰 금속들을 이용하며, 이 금속들은 수증기와 높은 열량과 함께 로켓 추력 실에서 연소 시킨다. 위 금속들의 연소 속성에 대한 해석은 이미 완료되었다. 수반응성 추진제의 가능성 있는 변형체에 대한 개념들은 수반응성 추진제 설계의 기초적인 제안들을 기하학 및 열역학적 연소 조건을 이용하여 논의 할 것이다.

  • PDF

A review: controlled synthesis of vertically aligned carbon nanotubes

  • Hahm, Myung-Gwan;Hashim, Daniel P.;Vajtai, Robert;Ajayan, Pulickel M.
    • Carbon letters
    • /
    • 제12권4호
    • /
    • pp.185-193
    • /
    • 2011
  • Carbon nanotubes (CNTs) have developed into one of the most competitively researched nano-materials of this decade because of their structural uniqueness and excellent physical properties such as nanoscale one dimensionality, high aspect ratio, high mechanical strength, thermal conductivity and excellent electrical conductivity. Mass production and structure control of CNTs are key factors for a feasible CNT industry. Water and ethanol vapor enhance the catalytic activity for massive growth of vertically aligned CNTs. A shower system for gas flow improves the growth of vertically aligned single walled CNTs (SWCNTs) by controlling the gas flow direction. Delivery of gases from the top of the nanotubes enables direct and precise supply of carbon source and water vapor to the catalysts. High quality vertically aligned SWCNTs synthesized using plasma enhance the chemical vapor deposition technique on substrate with suitable metal catalyst particles. This review provides an introduction to the concept of the growth of vertically aligned SWCNTs and covers advanced topics on the controlled synthesis of vertically aligned SWCNTs.

물분사 수소 가스터빈의 출력 향상을 위한 연구 (A Study for the Output Increament of the Hydrogen Gas Turbine with Water Injection)

  • 정귀성;오병수
    • 한국수소및신에너지학회논문집
    • /
    • 제9권1호
    • /
    • pp.1-7
    • /
    • 1998
  • Most of today's energy supply is obtained from fossil fuels. Despite of high energy density, higher store efficiency and long mileage, fossil fuels cause environmental pollution and their reserves are limited. In this study pure hydrogen gas and oxygen gas are burned without the emission of pollution. A gas turbine is used to obtain power. Water is injected into a combustor, which prevents overheating and recovers cooling heat. Excessively supplied water is recirculated. With variation of mass flow rate and equivalence ratio, the affection of water injection rate and the temperature of injected water on efficiency and power are experimented. Injected water gets cooling heat, is expanded from liquid to vapor and raises the thermal efficiency. It is enable to determine the rate of water injection, which makes the maximum power. The increase of temperature of water injection raises the efficiency of the system.

  • PDF

중공사막 가습에 따른 PEMFC의 성능 평가 (Performance Test of PEMFC with Hollow Fiber Membrane)

  • 이호열;천광우;박창권;오병수
    • 한국수소및신에너지학회논문집
    • /
    • 제16권1호
    • /
    • pp.82-91
    • /
    • 2005
  • Polymer membrane needs to maintain appropriate moisture. Insufficient moisture causes low conduction of hydrogen ion because of increased contact resistance between electrode and membrane by shrinking membrane, and abundant moisture decreases fuel cell performance as difficulty of diffusion reacting gas. Therefore, water controlling system is very consequential for the polymer membrane fuel cell. If hollow fiber membrane humidification is used between fuel and air lines, it is possible to supply heat to fuel and air by using thermal exchanger. It can supply appropriate humidity depending on operating temperature, and can recover heat from exhaust gas which contains water vapor and air. Because of simple structure of humidification system, this system can be easily applied in the PEMFC and cut down cost.

In-Situ Diagnosis of Vapor-Compressed Chiller Performance for Energy Saving

  • Shin Younggy;Kim Youngil;Moon Guee-Won;Choi Seok-Weon
    • Journal of Mechanical Science and Technology
    • /
    • 제19권8호
    • /
    • pp.1670-1681
    • /
    • 2005
  • In-situ diagnosis of chiller performance is an essential step for energy saving business. The main purpose of the in-situ diagnosis is to predict the performance of a target chiller. Many models based on thermodynamics have been proposed for the purpose. However, they have to be modified from chiller to chiller and require profound knowledge of thermodynamics and heat transfer. This study focuses on developing an easy-to-use diagnostic technique that is based on adaptive neuro-fuzzy inference system (ANFIS). The effect of sample data distribution on training the ANFIS is investigated. It is found that the data sampling over 10 days during summer results in a reliable ANFIS whose performance prediction error is within measurement errors. The reliable ANFIS makes it possible to prepare an energy audit and suggest an energy saving plan based on the diagnosed chilled water supply system.

엔진 폐열을 이용한 소형담수화장치의 실험적 연구 (Experimental Study of a Small Desalination Device Using Engine Waste Heat)

  • 이임경;고광수;박윤철
    • 한국지열·수열에너지학회논문집
    • /
    • 제18권1호
    • /
    • pp.12-19
    • /
    • 2022
  • Desalination has the advantage of being easy to supply water resources. However most desalination devices are developed mainly for large plants and it is not common to use desalination system for a small fishing ship. More than 50% of the input fuel energy of the small shipbuilding's engine is wasted without reused in a ship, and it is necessary to improving the fuel efficiency of the small fishing ship. In this study, a desalination device using waste heat from engine of the ships was developed. As results, it was found that if the condensing chamber uses a fan to circulate the water vapor, the freshwater production was up to 40.0% higher, and the freshwater production efficiency was up to 30.1% increased when the fan was operated.