• Title/Summary/Keyword: Water valve

Search Result 488, Processing Time 0.026 seconds

A Study on the Noise Reduction and Performance Improvement of the Hot Water Distributing System (시스템분배기 소음방지 및 성능개선방안 연구)

  • Kim, Yong-Ki;Lee, Tae-Won;Han, Tae-Su;Yoo, Sun-Hak
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1055-1060
    • /
    • 2009
  • Noise is one of the major environmental problems in human life. But hot water distributers with the flow rate control valve bring about often noise according to the heating control condition in residential buildings. The sound power level increased as the flow rate and pressure difference increased. And thus, experimental analyses for the flow rate control and the pressure difference control were carried out in this study to reduce the noise emitted from the flow rate control valve. As the results, the flow rate control method using a SMA(Shape Memory Alloy)-valve and the flow rate control system using a pressure difference sensor can be expected to control noise in the region of below 50 dB of sound power level.

  • PDF

A scheme of leak detection model in a reservoir pipeline valve system using wavelet coherence analysis of injected pressure wave (주입 압력파의 웨이블릿 일관성 분석을 사용한 저수조-관로-밸브 시스템에서의 누수탐지모형 연구)

  • Ko, Dongwon;Lee, Jeongseop;Kim, Jinwon;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.15-25
    • /
    • 2021
  • In this study, a method of leakage detection was proposed to locate leak position for a reservoir pipeline valve system using wavelet coherence analysis for an injected pressure wave. An unsteady flow analyzer handled nonlinear valve maneuver and corresponding experimental result were compared. Time series of pressure head were analyzed through wavelet coherence analysis both for no leak and leak conditions. The leak information can be obtained through either time domain reflectometry or the difference in wavelet coherence level, which provide predictions in terms of leak location. The reconstructed pressure signal facilitates the identification of leak presence comparing with existing wavelet coherence analysis.

Effects of the Geometry of Components Attached to the Drain Valve on the Performance of Water Hammer Pumps

  • Saito, Sumio;Takahashi, Masaaki;Nagata, Yoshimi;Dejima, Keita
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.4
    • /
    • pp.367-374
    • /
    • 2011
  • Water hammer pumps can effectively use the water hammer phenomenon in long-distance pipeline networks that include pumps and allow fluid transport without drive sources, such as electric motors. The results of experiments that examined the effect of the geometric form of water hammer pumps by considering their major dimensions have been reported. In addition, a paper has also been published analyzing the water hammer phenomenon numerically by using the characteristic curve method for comparison with experimental results. However, these conventional studies have not fully evaluated the pump performance in terms of pump head and flow rate, common measures indicating the performance of pumps. Therefore, as a first stage for the understanding of water hammer pump performance in comparison with the characteristics of typical turbo pumps, the previous paper experimentally examined how the hydrodynamic characteristics were affected by the inner diameter ratio of the drive and lifting pipes, the form of the air chamber, and the angle of the drive pipe. To understand the behavior of the components attached to the valve chamber and the air chamber that affects the performance of water hammer pumps, the previous study also determined the relationship between the water hammer pump performance and temporal changes in valve chamber and air chamber pressures according to the air chamber capacity. For the geometry of components attached to the drain valve, which is another major component of water hammer pumps, this study experimentally examines how the water hammer pump performance is affected by the length of the spring and the angle of the drain pipe.

Experimental Study on Performance Characteristics of High Speed Air Valve for Water Works (급수용 급속공기밸브의 성능특성에 관한 실험적 연구)

  • Lee, Sun Kon;Kaong, Sae Ho;Yang, Cheol Soo;Woo, Chang Ki
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.1-6
    • /
    • 2014
  • When the fluid energy convert into kinetic energy due to water hammer, the propagation velocity of pressure wave appear. The propagation velocity of pressure wave(1050 m/s) of very fast could be damage to the pipeline system. If the occurrence of water hammer is due to down-pressure, the faster the air exhaust or supply device is needed. it is high Speed Air Valve. In this paper, Each 3.12, 3.13, 3.72, $3.74kg/cm^2$ pipeline pressure were setting, and then executed pressure rapid drop for obtaining a high Speed Air Valve Operating time and pressure change data. the result was that pipe line pressure stabilization time were each 0.98, 1, 1.22, 1.25 sec. In other words, that pressure drop experimental results pipe line pressure was equal to atmospheric pressure without negative pressure After about one second. The study result would be useful to pipe line system stability design because this data could be foresee pressure stabilization time.

A Study on Improvement of Connection Method of Underground Parking Lot SP Equipment Water Supply Pipe for Effective Fire Activities (효과적인 소방활동을 위한 지하주차장 스프링클러설비 송수배관 연결방식의 개선에 관한 연구)

  • Son, Gae-Seong;Choi, Ji-Hun;Choi, Don-Mook
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.161-169
    • /
    • 2015
  • A fire sprinkler system is very important to extinguish fire in the building. The sprinkler system initiates sprinkler discharge if the detection system identifies a developing fire and opens the pre-action valve. However, pre-action fire sprinkler systems mainly installed in the underground parking lot at the apartment complex do not properly operate at fire if the connection type of fire sprinkler systems does not properly installed and operated. This study identified the relationship between fire dispersion & damage and the connection type of water supply in the sprinkler system from many fire cases at the apartment complex in South Korea. In addition, this study also identified the water supply differences and characteristics between South Korea and foreign countries. The main purpose of this study is also to improve the water connection types in the sprinkler system that can reduce the potential failures of pre-action valve operation through electrical signal system. The study also suggests the improvement plan for water connection types in pre-action fire sprinkler system that can minimize potential failure of pre-action fire sprinkler system. The suggestions for revising the fire safe standard in South Korea includes letting the water supply pipe of sprinkler system water inlet connect to the second side of pre-action valve and the water flow device that can minimize potential failure of sprinkler system.

Smart Water Purifier by Application Interworking (애플리케이션 연동을 통한 스마트 정수기)

  • Kim, Ji Woo;Lee, Seung Mok;Kim, Tae Hoon;Lee, Seung Ho;Woo, Young Woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.410-412
    • /
    • 2021
  • Recently, the amount of information and content has increased dramatically. Users can easily obtain recipe through various media. In addition, the water purifier market is growing without a downward trend and demand for more convenient and smart water purifiers are increasing. By using a smart water purifier with application, each individual can improve the quality of the dish by using a certain amount of water that each person prefers. A solenoid valve was used to allow only the amount of water set by individual to flow out and a solenoid valve and smartphones were linked using Bluetooth communication while using smartphone applications developed when setting the amount of water.

  • PDF

The Study of the Decision Criteria for the Urgency Released Valve in Hydraulic Dam (수력댐 비상방류밸브의 선정조건에 관한 연구)

  • Roh, H.W.;Lee, G.S.;Park, Y.M.;Kim, B.S.;Lee, Y.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.613-616
    • /
    • 2005
  • In general, the hollow jet valve, the fixed cone valve had been used for the urgency released or maintenance of the flow rate. Nowadays, the butterfly valve, the gate valve are applied in economic performance and operation maintenance more than the hollow jet valve, the fixed cone valve. However, in the case of butterfly valve, it should be required the strict application standard to the cavitation coefficient because the structural axis and disk were situated in pipe channel and the occurring the shock problem by Karman Vortex. And, the judgment data for choice were slight lowdown in water supply and drainage facilities standard or Japanese penstock technology standard, various standard of KOWACO etc. Therefore. there were investigated the valve inside phenomenon (cavitation, disk chattering, vibration) by velocity of flow and the stability examination of body by high velocity of flow through flow scale model test using the numerical analysis and PIV to establish the applicable extensibility of the butterfly valve for the urgency released valve.

  • PDF

A Study on Effect of Scale Formation in Water Jacket on Thermal Durability in LPG Engine (엔진 물통로 내부 벽면 스케일 축적이 LPG 엔진의 열적 내구성에 미치는 영향에 대한 연구)

  • 류택용;신승용;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.42-50
    • /
    • 2001
  • In this paper, the effects of scale formation in engine water jacket upon the thermal durability of engine itself and its component parts were studied. To understand the effect of quality of water, a full load engine endurance test for 50 hours was carried out with not-treated underground water. The followings were found through the tested engine inspection after the endurance test; 1-2 mm thick scale formation in the engine water jacket, valve seat wear, piston top land scuffing, piston pin stick, and cylinder bore scuffing in siamese area. In order to understand the causes of above test results, the heat rejection rate to coolant, the metal surface temperature of combustion chamber, and the oil and exhaust gas temperatures were measured and analyzed. The scale formed in the engine water jacket played a role as thermal insulator. The scale formed in the engine reduced the heat rejection rate to coolant and it caused to increase the metal surface temperature. The reduced heat rejection rate to coolant increased the heat rejection rate to oil and exhaust gas and increased the oil and exhaust gas temperature. Also, the reasons of valve seat wear, piston top land scuffing and cylinder bore scuffing, and piston pin stick quantitatively analyzed in this paper.

  • PDF

Effects of Flow Rate and Discharge Pressure with Compressing Spring in Non-diaphragm Type Stem of Water Pressure Reducing Valve (급수용 감압밸브의 비다이어프램 스템에서 압축스프링에 따른 유량 및 토출압력 효과)

  • Byeon, Jae-Uk;Kim, Chi-Ho;Park, Seong-Hwan;Lee, Myung-Won;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.103-109
    • /
    • 2019
  • The pressure reducing valve for water is controlled by the load of the compression spring and the force of the fluid acting on the diaphragm of the stem. Repeated upward and downward reciprocation of the pressure-reducing valve stem damages the diaphragm, resulting in leakage. In this study, we designed a stem without a diaphragm and adjusted the stiffness of the compressing spring. In order to select the spring stiffness, springs offering a stiffness of -20%, -10%, 0%, and 10% with respect to the stiffness of the compression spring attached to the existing pressure reducing valve stiffness. A prototype for the pressure reducing valve was fabricated and the pressure change was evaluated for the target static pressure (6 bar) by testing the pressure characteristics after mounting the modified stem and each compression spring. Evaluation of the pressure characteristics was carried out using ASSE 1003 and KS B 6153. In addition, the flow rates were compared by internal flow analysis of the conventional pressure reducing valve and the pressure reducing valve using the modified stems, and the flow analysis was performed using Solidworks flow simulation 2018. The spring stiffness was constantly discharged at the target static pressure of 3.793 kgf/mm, and the flow rate was increased by about 15% compared with the conventional pressure reducing valve.

Corrosion and Sliding Properties of the Nickel-Based Alloys for the Valve Seats Application

  • Honda, Tadashi
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.92-98
    • /
    • 2008
  • This paper describes the experiments of the corrosion and the sliding tests of the nickel-based alloys for the gate valve seating materials used at high pressure and temperature. The general corrosion rates and IGC susceptibility are tested in pressurized water at 533 K and 575 K and in Strauss test solution. The sliding tests have been done in pressurized water at 293 k, 473 K and 573 k. The alloys containing above 10% chromium may have the anti-corrosion properties that could be applied to the valve seats for the power plants. The good sliding performance and the good pressure tightness are obtained when the disc specimens that have hardness 500 to 600 Hv combined with the seat specimens that have hardness 250 to 410 Hv containing about 40 percent of iron. The large size gate valves sliding tests have certified the test results. The anti-wear properties of the seat alloy and the anti-IGC susceptibility of the disc alloy could be improved by the addition of silicon and niobium, respectively.