• Title/Summary/Keyword: Water use intensity indicator

Search Result 7, Processing Time 0.022 seconds

Application of OECD Agricultural Water Use Indicator in Korea (우리나라에 적합한 OECD 농업용수 사용지표의 설정)

  • Hur, Seung-Oh;Jung, Kang-Ho;Ha, Sang-Keun;Song, Kwan-Cheol;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.321-327
    • /
    • 2006
  • In Korea, there is a growing competitive for water resources between industrial, domestic and agricultural consumer, and the environment as many other OECD countries. The demand on water use is also affecting aquatic ecosystems particularly where withdrawals are in excess of minimum environmental needs for rivers, lakes and wetland habits. OECD developed three indicators related to water use by the agriculture in above contexts : the first is a water use intensity indicator, which is expressed as the quantity or share of agricultural water use in total national water utilization; the second is a water stress indicator, which is expressed as the proportion of rivers (in length) subject to diversion or regulation for irrigation without reserving a minimum of limiting reference flow; and the third is a water use efficiency indicator designated as the technical and the economic efficiency. These indicators have different meanings in the aspect of water resource conservation and sustainable water use. So, it will be more significant that the indicators should reflect the intrinsic meanings of them. The problem is that the aspect of an overall water flow in the agro-ecosystem and recycling of water use not considered in the assessment of agricultural water use needed for calculation of these water use indicators. Namely, regional or meteorological characteristics and site-specific farming practices were not considered in the calculation of these indicators. In this paper, we tried to calculate water use indicators suggested in OECD and to modify some other indicators considering our situation because water use pattern and water cycling in Korea where paddy rice farming is dominant in the monsoon region are quite different from those of semi-arid regions. In the calculation of water use intensity, we excluded the amount of water restored through the ground from the total agricultural water use because a large amount of water supplied to the farm was discharged into the stream or the ground water. The resultant water use intensity was 22.9% in 2001. As for water stress indicator, Korea has not defined nor monitored reference levels of minimum flow rate for rivers subject to diversion of water for irrigation. So, we calculated the water stress indicator in a different way from OECD method. The water stress indicator was calculated using data on the degree of water storage in agricultural water reservoirs because 87% of water for irrigation was taken from the agricultural water reservoirs. Water use technical efficiency was calculated as the reverse of the ratio of irrigation water to a standard water requirement of the paddy rice. The efficiency in 2001 was better than in 1990 and 1998. As for the economic efficiency for water use, we think that there are a lot of things to be taken into considerations to make a useful indicator to reflect socio-economic values of agricultural products resulted from the water use. Conclusively, site-specific, regional or meteorogical characteristics as in Korea were not considered in the calculation of water use indicators by methods suggested in OECD(Volume 3, 2001). So, it is needed to develop a new indicators for the indicators to be more widely applicable in the world.

Development of agricultural water use indicator (농업용수 사용지표 개발)

  • Lee, Kwang-Ya;Lim, Jong-Wan;Hong, Dae-Byuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.33-36
    • /
    • 2002
  • The purpose of this study is to develope a indicator for agricultural water use. Agricultural water is challenged by the increase of water use in the sectors of urbanization and industry and social pressure to use water in sustainable and environmentally sound way. The development of agricultural environment indicators is divided into 13 sectors, among which agricultural water use indicators include amount and intensity of agricultural water use, efficiency of agricultural water use, shortage or surplus of water use, water stress, etc.. Agricultural water use indicators provide basic data for sustainable and environmentally sound agricultural development, and also help policy decision makers to solve water shortage problems through water policy and water management measures by making the most of the total available water resources.

  • PDF

Intervention Analysis of Urbanization Effect on Rainfall Data at the Seoul Rain Gauge Station (서울지점 강우자료에 나타난 도시화의 간섭 분석)

  • Yoo, Chul-Sang;Kim, Dae-Ha;Park, Sang-Hyoung;Kim, Byung-Su;Park, Chang-Yeol
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.8
    • /
    • pp.629-641
    • /
    • 2007
  • This study estimated the urbanization effect of Seoul, the largest city in Korea, on its rainfall. For a comparative analysis, two different data sets are used: One is the precipitation data at the Jeonju rain gauge station, which has a relatively long record length but least urbanization effect, and the other at the Ichon rain gauge station, which has a short record length but located very near to Seoul with least urbanization effect. Also, the difference of the rainfall between Seoul and Jeonju rain gauge stations, as an indicator of urbanization effect, is quantified by use of the intervention model. As a result, it was found that the maximum rainfall intensity of the annual maximum rainfall events shows the increasing trend, its duration the decreasing trend, and the mean intensity the decreasing trend especially after 1960. Also, the quantification of urbanization effect using the intervention model shows that the increasing trend of rainfall intensity and total volume is still on going.

Intra-event variability of bacterial composition in stormwater runoff from mixed land use and land cover catchment

  • Paule-Mercado, Ma. Cristina A.;Salim, Imran;Lee, Bum-Yeon;Lee, Chang-Hee;Jahng, Deokjin
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.29-38
    • /
    • 2019
  • Microbial community and composition in stormwater runoff from mixed land use land cover (LULC) catchment with ongoing land development was diverse across the hydrological stage due different environmental parameters (hydrometeorological and physicochemical) and source of runoff. However, limited studies have been made for bacterial composition in this catchment. Therefore, this study aims to: (1) quantify the concentration of fecal indicator bacteria (FIB), stormwater quality and bacterial composition and structure according to hydrological stage; and (2) determine their correlation to environmental parameters. The 454 pyrosequencing was used to determine the bacterial community and composition; while Pearson's correlation was used to determine the correlation among parameters-FIB, stormwater quality, bacterial composition and structure-to environmental parameters. Results demonstrated that the initial and peak runoff has the highest concentration of FIB, stormwater quality and bacterial composition and structure. Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were dominant bacteria identified in this catchment. Furthermore, the 20 most abundant genera were correlated with runoff duration, average rainfall intensity, runoff volume, runoff flow, temperature, pH, organic matter, nutrients, TSS and turbidity. An increase of FIB and stormwater quality concentration, diversity and richness of bacterial composition and structure in this study was possibly due to leakage from septic tanks, cesspools and latrines; feces of domestic and wild animals; and runoff from forest, destroyed septic system in land development site and urban LULC. Overall, this study will provide an evidence of hydrological stage impacts on the runoff microbiome environment and public health perspective.

A Comparative Study on the Drought Indices for Drought Evaluation (가뭄평가를 위한 가뭄지수의 비교 연구)

  • Ryu, Jae-Hea;Lee, Dong-Ryul;Ahn, Jae-Hyun;Yoon, Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.397-410
    • /
    • 2002
  • In order to quantitatively identify historical drought conditions and to evaluate their variability, drought indices commonly used. The calculation method for the drought index based on the principal hydrological factors, such as precipitation and reservoir storage, can estimate the duration and intensity of a drought. In this study the Palmer-type formula for drought index is derived for the Nakdong River basin by analyzing the monthly rainfall and meteorological data at 21 stations. The Palmer Drought Severity Index(PDSI) is used for dry land sectors to evaluate the meteorological anomaly in terms of an index which permits time and space comparisons of drought severity. The Surface Water Supply Index(SWSI) is devised for the use in conjunction with the Palmer index to provide an objective indicator of water supply conditions in Nakdong River basin. The SWSI was designed to quantify surface water supply capability of a watershed which depends on river and reservoir water The Standardized Precipitation Index(SPI) is evaluated for various time periods of 1 to 12 months in Nakdong River basin. For the purpose of comparison between drought indices correlation coefficient was calculated between indices and appropriate SPI time period was selected as 10 months for Nakdong River basin. A comparative study is made to evaluate the relative severity of the significant droughts occurred in Nakdong River basin since 1976. It turned out that $'94{\sim}'97$ drought was the worst drought in it's severity. It is found that drought indices are very useful tools in quantitatively evaluating the severity of a drought over a river basin.

The Relationship Between the Locational Types and Biodiversity in the Sites of Geumgang Riparian Ecological Belts

  • Kang, Hyun-Kyung
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.3
    • /
    • pp.293-304
    • /
    • 2020
  • Background and objective: This study was carried out to assess the relationship between the internal and external environments and the ecological items in five sites with a high level of artificial use intensity prior to the establishment of Geumgang River riparian ecological belts. Methods: The sites were classified into forest type, cultivated land type and urbanized type in accordance with their respective locational types. Ecological items including plant ecology such as proportion, naturalization index and urbanization index of native species were analyzed and animal ecology such as the number of species and population of wild birds, amphibians and reptiles, mammals, and butterflies and dragonflies, which are indicator insects, were investigated. In addition, species diversity indices of wild birds, butterflies and dragonflies found in all the subject lands were computed. Results: Among the plant ecological items, the ratio of native species in the forest type was higher than 90%, which was a satisfactory level, while the naturalization and urbanization indices were less than 10%. The number of species in the animal ecological characteristics was reduced in the order of forest type, cultivated land type and urbanized type. As the results of correlation analysis, the internal area of the planted area showed a negative correlation with the total of individuals. The area of grasslands showed a positive correlation with the number of dragonfly species and the total number of individuals, thereby illustrating that wet grasslands have positive effects. The area of surrounding forests, as an external environment, had a negative correlation with the urbanization index (UI) but a positive correlation with the inhabitation of butterflies and the total number of species. Conclusion: The results confirmed the need for more diversified special compositions including planted land, grassland, wetland, bodies of water and waterways within the subject land in the wetland ecological belt along with the need for surrounding forest location and preservation from the perspective of purchase and restoration of land for enhancement of wider biodiversity in the future.

Freshness Monitoring of Raw Salmon Filet Using a Colorimetric Sensor that is Sensitive to Volatile Nitrogen Compounds (휘발성 질소화합물 감응형 색변환 센서를 활용한 연어 신선도 모니터링)

  • Kim, Jae Man;Lee, Hyeonji;Hyun, Jung-Ho;Park, Joon-Shik;Kim, Yong Shin
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.93-99
    • /
    • 2020
  • A colorimetric paper sensor was used to detect volatile nitrogen-containing compounds emitted from spoiled salmon filets to determine their freshness. The sensing mechanism was based on acid-base reactions between acidic pH-indicating dyes and basic volatile ammonia and amines. A sensing layer was simply fabricated by drop-casting a dye solution of bromocresol green (BCG) on a polyvinylidene fluoride substrate, and its color-change response was enhanced by optimizing the amounts of additive chemicals, such as polyethylene glycol, p-toluene sulfonic acid, and graphene oxide in the dye solution. To avoid the adverse effects of water vapor, both faces of the sensing layer were enclosed by using a polyethylene terephthalate film and a gas-permeable microporous polytetrafluoroethylene sheet, respectively. When exposed to basic gas analytes, the paper-like sensor distinctly exhibited a color change from initially yellow, then to green, and finally to blue due to the deprotonation of BCG via the Brønsted acid-base reaction. The use of ammonia analyte as a test gas confirmed that the sensing performance of the optimized sensor was reversible and excellent (detection time of < 15 min, sensitive naked-eye detection at 0.25 ppm, good selectivity to common volatile organic gases, and good stability against thermal stress). Finally, the coloration intensity of the sensor was quantified as a function of the storage time of the salmon filet at 28℃ to evaluate its usefulness in monitoring of the food freshness with the measurement of the total viable count (TVC) of microorganisms in the food. The TVC value increased from 3.2 × 105 to 3.1 × 109 cfu/g in 28 h and then became stable, whereas the sensor response abruptly changed in the first 8 h and slightly increased thereafter. This result suggests that the colorimetric response could be used as an indicator for evaluating the degree of decay of salmon induced by microorganisms.