• Title/Summary/Keyword: Water use

Search Result 8,259, Processing Time 0.037 seconds

Groundwater-use Estimation Method Based on Field Monitoring Data in South Korea (실측 자료에 기반한 우리나라 지하수의 용도별 이용량 추정 방법)

  • Kim, Ji-Wook;Jun, Hyung-Pil;Lee, Chan-Jin;Kim, Nam-Ju;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.467-476
    • /
    • 2013
  • With increasing interest in environmental issues and the quality of surface water becoming inadequate for water supply, the Korean government has launched a groundwater development policy to satisfy the demand for clean water. To drive this policy effectively, it is essential to guarantee the accuracy of sustainable groundwater yield and groundwater use amount. In this study, groundwater use was monitored over several years at various locations in Korea (32 cities/counties in 5 provinces) to obtain accurate groundwater use data. Statistical analysis of the results was performed as a method for estimating rational groundwater use. For the case of groundwater use for living purposes, we classified the cities/counties into three regional types (urban, rural, and urban-rural complex) and divided the groundwater facilities into five types (domestic use, apartment housing, small-scale water supply, schools, and businesses) according to use. For the case of agricultural use, we defined three regional types based on rainfall intensity (average rainfall, below-average rainfall, and above-average rainfall) and the facilities into six types (rice farming, dry-field farming, floriculture, livestock-cows, livestock-pigs, and livestock-chickens). Finally, we developed groundwater-use estimation equations for each region and use type, using cluster analysis and regression model analysis of the monitoring data. The results will enhance the reliability of national groundwater statistics.

Recent Trend for the Application of Total Economic Value (TEV) Estimation to Groundwater Resources (지하수자원의 경제적 가치 평가 적용과 관련한 최근동향)

  • Song, Sung-Ho;White, Paul;Zemansky, Gil
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • Total Economic Value (TEV) provides a framework to estimate the economic value of water resources including groundwater with multiple applications to natural resource economics and environmental economics. Crucial to the application of economic analysis to natural resources are techniques to value the resources as an economic value that is expressed in monetary terms. On the other hand, the aim of TEV estimation is to determine the economic value of water resources including 'use' with production and recreation and 'non-use' such as existence values. TEV is used to assess the economic value of water resources for the multiple goods, and environmental 'services' that are provided by a water resource and also used to assess options for water use, for example balancing production values provided by water resource use against the cost of resource degradation by that use. The value of TEV can be assessed over time where pollution or unsustainable use may reduce the economic value of an environmental asset. Therefore, values are used to assess options of resource use, sometimes leading to policies on resource conservation or allocation. In conclusion, the application of TEV would be well adjusted over Jeju Island where groundwater resources account for more than 98% water resources and the budget of water demand/supply shows disparity over the Island.

A Study on the Evaluation Process Development for the Use of Outflowing Groundwater in Large-Scale Buildings (대형건축물의 유출지하수 활용을 위한 평가 프로세스구축에 관한 연구)

  • Kim, Jae-Yeob;Lee, Dong-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.3
    • /
    • pp.91-97
    • /
    • 2010
  • Recently, as a countermeasure to the buoyancy of a building, the use of permanent drainage methods have been on the increase, and these provide benefits both in terms of economical feasibility and efficiency. When a permanent drainage method is applied, some underground water can drain out. Korea has been designated by PAI (Population Action International) as a water-stressed country, and the use of outflowing groundwater is required for the efficient oversight of water resources. However, the evaluation process on the practical use of underground water is currently insufficient. Therefore, the amount of outflowing groundwater put to practical use and the standard for the water quality were examined in this research, with the aim of establishing anappraisal process on the practical use of underground water drainage. In addition, standards for the assessment of the treatment process and the application cost of underground water drainage were developed. On this basis, an evaluation process on the use of outflowing groundwater was developed and applied inthe field. The application result proved that it was possible to assess the initial investment cost and the maintenance and management cost in the field, and thesecan be compared to the costs when supplied water is used, which makes it possible to apply in the field.

Effective Use of Water Resources Through Conjunctive Use - (II) Application (지표수-지하수를 연계한 수자원의 효율적 이용 - (II) 적용)

  • Kim, Su-Min;Lee, Sang-Il;Kim, Byeong-Chan
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.10
    • /
    • pp.799-812
    • /
    • 2004
  • Conjunctive use of surface and ground water has drawn much attention as a promising means to solve water shortage problems. Characterized by its maximum utilization of regional resources and environmental friendliness, conjunctive use is expected to contribute to the integrated water resources management in the coming era. This paper examines the applicability of the methodology for conjunctive use developed in the companion paper (this issue). The method consists of the entire process of conjunctive use, including site assessment using analytic hierarchy process, management scenario development based on drought analysis, and evaluation of benefits obtained. Sokcho City was chosen as the study area, and the application of derived operation scenarios for surface and subsurface reservoirs revealed that water of 4.9∼7.4 million cubic meters a year can be attainable additionally. The developed methodology enables one to devise management schemes and to quantify their effectiveness, which makes the method useful for water resources planners as well as practitioners.

A Study on the Quantity of Using Water in APT for Estimating the Reasionable amount of Water Supplied (아파트에서 적정 급수량 산정을 위한 사용수량에 관한 조사 연구)

  • ChangHuanAn
    • Journal of the Korean housing association
    • /
    • v.5 no.1
    • /
    • pp.85-90
    • /
    • 1994
  • Using water in each apartment is influnced by several facters including the income level of inhabitants, the manner of life, the area apartments and climate. The automization of santory machines or facilites in recently bulit apartements has caused largely increases in amount of water use. Therefore the design for water supply is very important for the maintenance of the optimum level or pressure of water supply. This study is based on the offer of basic data for improving the quality of water supply and imploying the sanitory machine or sanitory facilites by analysis of amount increased of water use rapidly. The quantity of hot and cold water use by year is examined as a factor of construction in apartment.

  • PDF

A Short-term Forecasting of Water Supply Demands by the Transfer Function Model (Transfer Function 모형을 이용한 수도물 수요의 단기예측)

  • Lee, Jae-Joon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.2
    • /
    • pp.88-103
    • /
    • 1996
  • The objective of this study is to develop stochastic and deterministic models which could be used to synthesize water application time series. Adaptive models using mulitivariate ARIMA(Transfer Function Model) are developed for daily urban water use forecasting. The model considers several variables on which water demands is dependent. The dynamic response of water demands to several factors(e.g. weekday, average temperature, minimum temperature, maximum temperature, humidity, cloudiness, rainfall) are characterized in the model by transfer functions. Daily water use data of Kumi city in 1992 are employed for model parameter estimation. Meteorological data of Seonsan station are utilized to input variables because Kumi has no records about the meteorological factor data.To determine the main factors influencing water use, autocorrelogram and cross correlogram analysis are performed. Through the identification, parameter estimation, and diagnostic checking of tentative model, final transfer function models by each month are established. The simulation output by transfer function models are compared to a historical data and shows the good agreement.

  • PDF

Effect of Sirikit Dam Operation Improvement on water shortage situations due to the land use and climate changes from the Nan Basin

  • Koontanakulvong, Sucharit;Suthidhummajit, Chokchai
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.232-232
    • /
    • 2015
  • Land use and climate changes are the important factors to determine the runoff and sediment loads from the watershed. The changes also affected to runoff volume/pattern to the dam operation and may cause flood and drought situations in the downstream area. Sirikit Dam is one of the biggest dams in Thailand which cover about 25 % of the runoff into the Central Plain where the Bangkok Capital is located. The study aims to determine the effect of land use change to the runoff/sediment volume pattern and the rainfall-runoff-sediment relationship in the different land use type. Field measurements of the actual rainfall, runoff and sediment in the selected four sub-basins with different type of land use in the Upper Nan Basin were conducted and the runoff ratio coefficients and sediment yield were estimated for each sub-basin. The effect of the land use change (deforestation) towards runoff/sediment will be investigated. The study of the climate change impact on the runoff in the future scenarios was conducted to project the change of runoff volume/pattern into the Sirikit Dam. The improvement of the Sirikit Dam operation rule was conducted to reduce the weakness of the existing operation rules after Floods 2011. The newly proposed dam operation rule improvement will then be evaluated from the water shortage situations in the downstream of Sirikit Dam under various conditions of changes of both land use and climate when compared with the situations based on the existing reservoir operation rules.

  • PDF

Surveying irrigation water withdrawls for river operation (하천운영을 위한 농업용수 취수량 조사)

  • 김현준
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.47-50
    • /
    • 1999
  • From 1997 irrigation water withdraws has been surveyed for the purpose of river operation and management . Recently , the River Law was revised (1999.2.8) and obligate to water users to report their proposed and actual water withdrawals. If we can save more water from rice paddy area, we can use more water for municipal and industrial activity and we can expect water quality should be improved in the river. So the role of irrigation water use efficiency is more and more important.

  • PDF

Assessment of water use vulnerability in the unit watersheds using TOPSIS approach with subjective and objective weights (주관적·객관적 가중치를 활용한 TOPSIS 기반 단위유역별 물이용 취약성 평가)

  • Park, Hye Sun;Kim, Jeong Bin;Um, Myoung-Jin;Kim, Yeonjoo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.8
    • /
    • pp.685-692
    • /
    • 2016
  • This study aimed to develop the indicator-based approach to assess water use vulnerability in watersheds and applied to the unit watershed within the Han River watershed. Vulnerability indices were comprised of three sub-components (exposure, sensitivity, adaptive capacity) with respect to water use. The indicators were made up of 16 water use indicators. Then we estimated vulnerability indices using the Technique for Order of Preference by Similarity to Ideal Solution approach (TOPSIS). We collected environmental and socio-economic data from national statistics database, and used them for simulated results by the Soil and Water Assessment Tool (SWAT) model. For estimating the weighted values for each indicator, expert surveys for subjective weight and data-based Shannon's entropy method for objective weight were utilized. With comparing the vulnerability ranks and analyzing rank correlation between two methods, we evaluated the vulnerabilities for the Han River watershed. For water use, vulnerable watersheds showed high water use and the water leakage ratio. The indices from both weighting methods showed similar spatial distribution in general. Such results suggests that the approach to consider different weighting methods would be important for reliably assessing the water use vulnerability in watersheds.

Analysis of spatial characteristics and irrigation facilities of rural water districts

  • Mikyoung Choi;Kwangya Lee;Bosung Koh;Sangyeon Yoo;Dongho Jo;Minchul La;Sangwoo Kim;Wonho Nam
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.903-916
    • /
    • 2023
  • This study aims to establish basic data for efficient management of rural water by analyzing regional irrigation facilities and benefitted areas in the statistical yearbook of land and water development for agriculture at the watershed level. For 511 domestic rural water use areas, water storage facilities (reservoirs, pumping & drainage stations, intake weirs, infiltration galleries, and tube wells) are spatially distributed, and the benefitted areas provided at the city/county level are divided by water use area to provide agricultural water supply facilities. The characteristics of rural water district areas such as benefitted area, were analyzed by basin. The average area of Korea's 511 rural water districts is 19,638 ha. The average benefitted area by rural water district is 1,270 ha, with the Geum River basin at 2,220 ha and the Yeongsan River basin at 1,868 ha, which is larger than the overall average. The Han River basin at 807 ha, the Nakdong River basin at 1,121 ha, and the Seomjing River basin at 938 ha are smaller than the overall average. The results of this basic analysis are expected to be used to set the direction of various supply and demand management projects that take into account the rational and scientific use and distribution of rural water and the characteristics of water use areas by presenting a quantitative definition of Korea's agricultural water districts.