• Title/Summary/Keyword: Water use

Search Result 8,259, Processing Time 0.047 seconds

Optimal Estimation of Water Use in the Large-Scale Basin (대규모 유역에서의 적정 용수이용량 산정)

  • Ryoo, Kyong-Sik;Hwang, Man-Ha
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.3
    • /
    • pp.3-10
    • /
    • 2007
  • In general method to estimate the water supplies in the large-scale basin, indirect estimation method such as unit loading factor method has been used. However, the estimated water supplies are much different to the real water supplies used in the any basin because these general methods estimate them considering water supply demands only. Especially, water supplies for irrigation are big different to the real water supplies in which the water supplies for irrigation are depend on the weather conditions such as evaporation, basin conditions such as infiltration, the reservoir operation rule for irrigation water, and distribution methods. Thus, a new estimation method is developed to estimate the real water demands which is essential factors for the effective water resources operation in the basin. This method is for estimating the water supplies and return rates based on the survey of the irrigation reservoirs and the analysis of effects to the stream flows, return flows, and water supplies for irrigation which water supplies and return rates are used in the basin water management model. The water supply usages in each subbasin are validated by comparisons between the simulated discharges from the basin water management model and the discharges measured in the control points.

Spatio-temporal Water Quality Characteristics of Major Streams in Pal-dang Watershed (팔당수계 주요하천 수질의 시·공간적 특성)

  • Han, Mideok;Lee, Eunju;Oh, Jogyo;Kim, Woongsoo;Lee, Changhee;Namkung, Eun;Chung, Wookjin
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.394-403
    • /
    • 2009
  • A total of 52 sampling sites were selected in the stream network of the upper Paldang watershed (e.g. Kyonan, Gapyeong, Jojong, Chengmi, Bockha, Yanghwa and Heuk streams). Over the time period of April 2007-February 2008, 1820 samples were collected and analyzed for physico-chemical variables of the upper watershed in order to investigate spatio-temporal water quality variation in particular the relationship with land use. Although temporal variations of water quality in each stream were similar and were significantly influenced by flow, spatial variations in each stream varied as physico-chemical characteristics of upper watershed. As a result of regression analysis, Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Nitrogen (T-N), and Total phosphorus (T-P) concentration were the most significantly and positively associated with people population density. It is necessary to manage not only water quality but also land use of upper watershed and flow flux.

Land Use Characteristics in the Kyungan Watershed by Analyzing Long-Term Land Cover Data (장기적 토지피복 분석을 통한 경안천 유역의 토지이용 특성)

  • Han, Mideok;Kim, Jichan;Chung, Wookjin
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.159-166
    • /
    • 2011
  • The use of land cover was sharply changed during 1975~2007 in the Kyungan watershed $(561.12 km^2)$. The changes occurred over an area of more than $227.65 km^2$ during the overall period at changing rates of 1.04% per year for water area, 1.79% per year for residential area, 2.99% per year for bare area, 3.03% per year for wetland area, 3.04% per year for grass area, 0.87% per year for forest and 2.32% per year for agriculture area. Water, residential, bare and wetland areas increased, while grass, forest and agriculture areas decreased during the last 32 years. BOD concentrations of representative sites for each sub-watershed continuously increased until the early 2000s as residential area increased with the highest discharged load, but decreased after the mid 2000s except upper Kyungan watershed. Such decline appears to be associated with the planning of Total Maximum Daily Load management for Gwangju city and expansion of waste water treatment plant. It is necessary to control land use/cover changes of the upper watershed and to prepare appropriate watershed management system for improvement in river environment including water quality, stream flow and bio-diversity.

Estimating the Benefits of Seawater Flowing by using Meta-Regression for Benefit Transfer - Case of Geumgang River - (메타회귀분석을 이용한 해수유통 편익추정 - 금강을 중심으로 -)

  • Shin, Chang-Seob;Cho, Wonjoo
    • Journal of Korean Society of Rural Planning
    • /
    • v.29 no.4
    • /
    • pp.191-200
    • /
    • 2023
  • This study aims to estimate the value of environmental services that could be generated by seawater flowing in the Geumgang Estuary by using meta-regression for benefit transfer. The environmental services that can be generated by seawater flowing are assumed to be improved water quality, increased biodiversity, and enhanced water-friendly effect. The analysis was conducted using 122 data from 28 studies from EVIS. The results show that households in the neighborhood where seawater is distributed are willing to pay about KRW 46,918, KRW 7,752, and KRW 7,859 per year for improved water quality, increased biodiversity, and enhanced water-friendly, respectively. The WTP of the national households other than neighboring households was found to be KRW 19,401, KRW 3,206, and KRW 3,250 for the three environmental services, respectively. The WTP for water quality improvement is higher than that for biodiversity increase and water-friendly effect increase, which may be due to the fact that water quality improvement is an environmental service that is close to the use value. In addition, neighboring households have a higher WTP than national households because neighboring households are more likely to evaluate the benefits of seawater flowing as a use value, while national households are more likely to evaluate it as a non-use value.

Development of Microwave Water Surface Current Meter for General Use to Increase Efficiency of Measurements of River Discharges (하천유량측정의 효율성 향상을 위한 범용 전자파표면유속계 개발)

  • Kim, Youngsung;Noh, Joonwoo;Choi, Kwangsoon
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.225-231
    • /
    • 2014
  • Discharge measurement during flood season is very difficult. Microwave water surface current meter (MWSCM) can measures river surface velocities easily without contacting water. This study introduces its improved version, MWSCM for general use. The existing version of MWSCM is for floods so that its applicable period in a year is short. It has been improved to extend its applicability in a year. The range of measurable velocity for MWSCM for general use is extended so it can be applied during normal flows as well as high flows. MWSCM for general use can measure the velocity range of $0.03{\sim}20.0ms^{-1}$, whereas MWSCM for floods can measure the velocity range of $0.5{\sim}10.0ms^{-1}$. To make such innovation of MWSCM for general use, the applied microwave frequency of MWSCM was changed from 10 GHz to 24 GHz. Waveguide slot array antenna has been designed with the new development of the circuit of transmitting and receiving part. Improvement requests on the existing MWSCM for floods - weight lightening, measured velocity stabilization, self-test, low power consumption, and waterproof and dampproof - from the users of it have been reflected for the development of the new version of MWSCM.

Setting limits for water use in the Wairarapa Valley, New Zealand

  • Mike, Thompson
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.227-227
    • /
    • 2015
  • The Wairarapa Valley occupies a predominantly rural area in the lower North Island of New Zealand. It supports a mix of intensive farming (dairy), dry stock farming (sheep and beef cattle) and horticulture (including wine grapes). The valley floor is traversed by the Ruamahanga River, the largest river in the Wellington region with a total catchment area of 3,430 km2. Environmental, cultural and recreational values associated with this Ruamahanga River are very high. The alluvial gravel and sand aquifers of the Wairarapa Valley, support productive groundwater aquifers at depths of up to 100 metres below ground while the Ruamahanga River and its tributaries present a further source of water for users. Water is allocated to users via resource consents by Greater Wellington Regional Council (GWRC). With intensifying land use, demand from the surface and groundwater resources of the Wairarapa Valley has increased substantially in recent times and careful management is needed to ensure values are maintained. This paper describes the approach being taken to manage water resources in the Wairarapa Valley and redefine appropriate limits of sustainable water use. There are three key parts: Quantifying the groundwater resource. A FEFLOW numerical groundwater flow model was developed by GWRC. This modelling phase provided a much improved understanding of aquifer recharge and abstraction processes. It also began to reveal the extent of hydraulic connection between aquifer and river systems and the importance of moving towards an integrated (conjunctive) approach to allocating water. Development of a conjunctive management framework. The FEFLOW model was used to quantify the stream flow depletion impacts of a range of groundwater abstraction scenarios. From this, three abstraction categories (A, B and C) that describe diminishing degrees of hydraulic connection between ground and surface water resources were mapped in 3 dimensions across the Valley. Interim allocation limits have been defined for each of 17 discrete management units within the valley based on both local scale aquifer recharge and stream flow depletion criteria but also cumulative impacts at the valley-wide scale. These allocation limits are to be further refined into agreed final limits through a community-led decision making process. Community involvement in the limit setting process. Historically in New Zealand, limits for sustainable resource use have been established primarily on the basis of 'hard science' and the decision making process has been driven by regional councils. Community involvement in limit setting processes has been through consultation rather than active participation. Recent legislation in the form of a National Policy Statement on Freshwater Management (2011) is reforming this approach. In particular, collaborative consensus-based decision making with active engagement from stakeholders is now expected. With this in mind, a committee of Wairarapa local people with a wide range of backgrounds was established in 2014. The role of this committee is to make final recommendations about resource use limits (including allocation of water) that reflect the aspirations of the communities they represent. To assist the committee in taking a holistic view it is intended that the existing numerical groundwater flow models will be coupled with with surface flow, contaminant transport, biological and economic models. This will provide the basis for assessing the likely outcomes of a range of future land use and resource limit scenarios.

  • PDF

Analysis of Domestic Water Consumption Characteristics for Water Usage Purpose (가정용수의 사용 목적별 소비경향 특성분석)

  • Choi, Sun-hee;Son, Mi-na;Kim, Sang-hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.23-29
    • /
    • 2008
  • Throughout the analysis of field data from water distribution system, valid parameters were determined that can be included in the water service and design plan. This study investigates water consumption patterns to understand the variation of water-demand structures utilizing the pattern analysis of domestic purpose water. Water use data were collected by a public water resources management firm in Korea, Kwater, for 140 houses monitored during three years. Flow meters were installed at the faucet for drinking water, the shower booth, the laundry machine, bathroom sink, toilet, and garden faucet. Data was filtered using multiple physically meaningful criteria to improve analysis credibility. Mann Kendall and Spearman's Rho tests were used to carry out the analysis. Distinct factors of water consumption patterns can be determined for both increasing and decreasing trends of water use. Throughout the data analysis, the characterization of terms was classified and analyzed by the condition of the location of water-demand. Analysis of this data provide a physical basis for the parameter configuration of a reasonable design for a domestic water demand prediction model.

Evaluation of Irrigation Canal Systems by the AHP(Analysis Hierarchy Process) Method (AHP기법에 의한 관개용수로 조직의 평가)

  • 박재흥;김선주;김필식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.96-108
    • /
    • 2003
  • Agricultural water occupies the largest portion of total water use in Korea, and generally researches on the development of agricultural water have been stressed on the demand of agricultural water itself. But it is unavoidable to change a policy from the development of water resources to cope with the increase of water demand to the effective management of existing water resources. Evaluation of the decrepitude of irrigation facilities and their reasonable maintenance are important for the effective supply and use of agricultural water. Therefore it is necessary to develop evaluation technique that diagnoses the current condition of irrigation canals and suggest a countermeasure to improve the found problems. 25 items in 6 classes were selected for the evaluation of irrigation canal systems, and the weighted value between the items was calculated using AHP (Analysis Hierarchy Process) method. The current condition of the irrigation facilities was evaluated from the class evaluation marks, and ranking was decided from the total marks between the projects, and finally the priority of the project for the improvement was given.

An Experimental Study on Vibration Control of Water Hammering in Water Pipe System (급수배관시스템의 수충격 진동제어를 위한 실험적 연구)

  • Lee, Jang-Hyun;Lee, Hyo-Haeng;Kwon, Byoung-Ha;Oh, Jin-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.453-458
    • /
    • 2008
  • Pump of high lift use to development of a technological level according as a building grow big. Water-Hammer to increase by valve of fast to closing agreeably to pipe laying to accept electronic valve, because by a damage of piping-system and the devil knows injury of vibration. Water-Hammer take a low effect to various method for solve. A New type manufacture develop and testing of pipe line to same to axis use to accumulator for water-Hammer to low effect and liner control of pressure. Impact-pressure of absorption ability and confirmation to decrease of vibration level through to preexistence manufactures and comparative test. Water-hammer and pipe vibration make low of piping system.

  • PDF

Effects of ion-exchange for NOM removal in water treatment with ceramic membranes ultrafiltration

  • Kabsch-Korbutowicz, Malgorzata;Urbanowska, Agnieszka
    • Membrane and Water Treatment
    • /
    • v.3 no.4
    • /
    • pp.211-219
    • /
    • 2012
  • To enhance the efficiency of water treatment and reduce the extent of membrane fouling, the membrane separation process is frequently preceded by other physico-chemical processes. One of them might be ion exchange. The aim of this work was to compare the efficiency of natural organic matter removal achieved with various anion-exchange resins, and to verify their potential use in water treatment prior to the ultrafiltration process involving a ceramic membrane. The use of ion exchange prior to ceramic membrane ultrafiltration enhanced final water quality. The most effective was MIEX, which removed significant amounts of the VHA, SHA and CHA fractions. Separation of uncharged fractions was poor with all the resins examined. Water pretreatment involving an ion-exchange resin failed to reduce membrane fouling, which was higher than that observed in unpretreated water. This finding is to be attributed to the uncharged NOM fractions and small resin particles that persisted in the water.