• Title/Summary/Keyword: Water treatment

Search Result 12,071, Processing Time 0.044 seconds

Study on characteristic for Larson's ratio of water treatment plants (국내 정수장의 Larson's ratio 특성에 관한 연구)

  • Min, Byung-dae;Chung, Hyen-mi;Ahn, Kyung-hee;Park, Ju-hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.5
    • /
    • pp.579-586
    • /
    • 2016
  • In many countries in order to manage corrosion of water treatment process, it is currently using Langelier index (LI). However, management of the Larson's ratio (LR) to compare corrosion management and LI which can be generated by the water treatment process is required. In this study, in order to ensure data LR, factors associated with the actual corrosion resistance of water treatment plant was measured. Using the measured data, the model equation can be estimated alkalinity, and using the statutory water quality data, LR and alkalinity is estimated. At comparison of the measured value and estimated value of alkalinity, it appeared in $R^2$ = 0.629, using the statutory water quality data and estimated alkalinity model, LR and alkalinity (Whole water treatment plants : 472) is estimated. Concentration of estimated alkalinity is 0.5 mg/L to 107.5 mg/L (average : 23.2 mg/L), and LR is 0.1 to 10 (average : 1.3). At tendency to corrosion of investigated LR, "No metal tendency" (>0.5) is 39 water treatment plants, 8.26 %, and "corrosion metal tendency" is 433 water treatment plants, 91.74%.

Recovery of Aluminium Coagulants from Water Treatment Plant Sludges (정수 슬러지로부터 알루미늄 응집제의 회수에 관한 연구)

  • Lee, Jae-Bok;Hwang, Jeong-Wuk;Kim, Jin-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.3
    • /
    • pp.30-40
    • /
    • 1998
  • Increasing water consumption produced sludge problems of the water treatment plants. The objective of this study is to investigate aluminium coagulants recovery n acidic and alkaline conditions. Water treatment plant sludge produced in Pusan Metropolitan City were tested for the aluminium extraction process. Experiment samples were obtained in summer from water treatment plants of Deoksan and Myongjang. Aluminium coagulants used in these plants during the test period were polyaluminium chloride(PAC), polyaluminium sulfate organic(PSO), polyaluminium sulfate silicate(PASS). Aluminium contents of water treatment sludge were in the range of 7.2~10.9% of the total solids. The recovery percentages for aluminium and iron by acidic extraction method was evaluated to 88% and 42% respectively. Extracted mass variation for other materials such as iron, manganese, total organic carbon was observed during the extraction operation. Alkaline extraction produced more than two times amount of total organic carbon than that in the acidic extraction process.

  • PDF

Recent advances in water and wastewater treatment using membranes with carbon nanotubes

  • Michal, Bodzek;Krystyna, Konieczny;Anna, Kwiecinska-Mydlak
    • Membrane and Water Treatment
    • /
    • v.13 no.6
    • /
    • pp.259-290
    • /
    • 2022
  • Carbon nanotubes (CNTs), due to their excellent physical, chemical and mechanical properties and their ability to prepare new membranes with attractive properties, have found applications in water and wastewater technology. CNT functionalization, which involves the introduction of different types of functional groups into pure CNTs, improves the capabilities of CNT membranes for water and wastewater treatment. It turns out that CNT-based membranes have many advantages, including enhanced water permeability, high selectivity and anti-fouling properties. However, their full-scale application is still limited by their high cost. With their tremendous separation efficiency, low biofouling potential and ultra-high water flux, CNT membranes have the potential to be a leading technology in water treatment in the future, especially in desalination.

Evaluation of Haloacetic Acid Formation Potential in Drinking Water Treatment Process by Fraction Technique (정수처리 공정에서 용존 유기물질 분류에 의한 haloacetic acid 생성능 평가)

  • Son, Hee-Jong;Hwang, Young-Do;Ryu, Dong-Choon;Jung, Chul-Woo;Lee, Gun;Son, Hyeng-Sik
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1655-1662
    • /
    • 2014
  • A comprehensive fractionation technique was applied to a set of water samples obtained along drinking water treatment process with ozonation and biological activated carbon (BAC) process to obtain detailed profiles of dissolved organic matter (DOM) and to evaluate the haloacetic acid (HAA) formation potentials of these DOM fractions. The results indicated that coagulation-sedimentation-sand filtration treatment showed limited ability to remove hydrophilic fraction (28%), while removal of hydrophobic and transphilic fraction were 57% and 40%, respectively. And ozonation and BAC treatment showed limited ability to remove hydrophobic fractions (6%), while removal of hydrophilic and transphilic fractions were 25% and 18%. The haloacetic acid formation potential (HAAFP)/dissolved organic carbon (DOC) of hydrophilic fraction was the highest along the treatment train and HAAFP/DOC of hydrophilic fraction was higher than hydrophobic and transphilic fraction as 23%~30%, because of better removal for hydrophobic fraction both in concentration and reactivity.

Convergence Study on Organic Sludge Treatment System (유기성 슬러지 처리 시스템에 관한 융합연구)

  • Han, Doo-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.213-217
    • /
    • 2020
  • An eco-friendly water purifier was developed using natural minerals, plants, and sludge from water purification plants. A wastewater complex treatment system using this water purification agent was developed. The wastewater complex treatment system goes through the process of inflow of contaminated water, input of water purification agent, operation of a pressurized flotation device, sludge flotation, sludge collection and treatment water discharge. This device was applied to the removal of green algae in livestock desorption liquid, broiler washing water, factory wastewater, sewage treatment plant and pond to obtain excellent removal rate. The use of natural water purification agents for organic waste purification has not been investigated.

Utility Estimation of Pre-filtration on the Membrane Water Treatment Process (막여과 정수처리공정에서 전여과공정의 효용성 평가)

  • Park, Min Koo;Choi, Sang il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.445-448
    • /
    • 2008
  • The application of the membrane filtration process has been increased for the drinking water treatment system because of excellent quality of treated water compared with the sand filtration process. The selection of suitable pre-treatment processes and optimum flux according to the characteristics of raw water are important factors for the design of membrane processes. In this study, the most efficient pre-treatment processes for drinking water was selected by investigating the effects of pre-treatment processes on the operational stability of the membrane filtration process. Both lab-scale and pilot-scale experiments were conducted. In the lab-scale test, the effect of pre-treatment processes on the stability of the membrane filtration process was investigated indirectly by comparing the performance of membrane flux for raw water, pre-treated water, and membrane permeated water. In the pilot-scale test, the usefulness of prefiltration processes was assessed by comparing the performance of single membrane process and hybrid coagulation-membrane process. The results indicated that the coagulation process contributed to the stabilization of trans-membrane pressure (TMP) by removing contaminants on membranes, though the pre-filtration process had little effect on the TMP.

Current Condition and Prospect of On-Site Domestic Wastewater Treatment Technologies (합병정화조 기술현황 및 전망)

  • 임연택
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.06a
    • /
    • pp.95-112
    • /
    • 1998
  • Water quality in the public water course has been polluted more seriously than ever before due to the increase of the number and aremount of pollution sources such as domestic and industrial wastewater. For water quality conservation, the Korean government has been trying to construct sewage treatment facilities continually, of which treatment capacity reached to 11,452,400m$^{3}$/day in 1996. Night soil treatment facilites of m nationwide have the treatment capacity of 24,038m$^{3}$/day. But water quality has not been improved because the sewer systems were insufficient and the treatment efficiencies of sewage were not high, enough. For renovation of water quality, miscellaneous domestic wastewater must be treated because 27g BOD/day out of total 40g BOD/person-day come from miscellaneous wastewater, comparing to 13g BOD/day from night soil. However, sole treatment purifier treat only night soil from the flushing toilet. Therefore, it may be desirable to treat the miscellaneous domestic wastewater and the night soil from flushing toilet together by joint treatment purifier system as on-site domestic wastewater treatment technology. In Korea, the joint treatment purifier system, introduced in 1997, have the benefit as follows; i) good water poiluion control effect, ii ) good effect on river water flow, iii) water pollution control with sewage treatment facility, and iv) rapid pollution control effect, etc. In order to achieve a good effect as stated before, i ) strengthening effluent guideline including BOD, nitrogen and phosphorus, ii ) specializing operation to maintain high performance, and iii) supporting its construction and maintenance costs by the governmental level may be necessary: In addition, automation system of joint treatment purifier, technology for its package and compactness, and a new bio-media bio-filter with higher capacity should be further developed in agreement with a more stringent effluent guideline.

  • PDF

A study about treatment for water treatment residual sludge using submerged membrane system (침지식 막여과 공정을 이용한 정수장 배출수 처리에 관한 연구)

  • Kim, Jun-Hyun;Lee, Ju-Hyung;Moon, Baek-Su;Kwak, Young-Ju;Jang, Jung Woo;Kim, Jinho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.2
    • /
    • pp.181-193
    • /
    • 2014
  • Various treatment system for residuals have applied to save water resources, but most of them were not be satisfied with legal standard consistently. In this study, submerged membrane treatment system was operated to treat water treatment plant residuals and operation parameters was evaluated. Result of this experiment, high concentration organic matters contributed to high increase Transmembrane pressure(TMP) of membrane system(from 0.05 bar to 0.35 bar). And backwash process was effective to stabilize membrane system operation. After Cleaning-In-Place(CIP), permeability was recovered about 100 % from first operation condition. Inorganic matters (Fe, Mn, Al, Ca, Mg) were not effective membrane filtration performance. The quality of residual treatment was satisfied with drinking water quality standard and a treated water from that system was suitable for water reuse.

Resource recovery and harmless treatment of waste oil-in-water drilling fluid

  • Tang, Chao;Xie, Shui Xiang
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.277-280
    • /
    • 2017
  • Destablization and demulsification is a difficult task for the treatment of waste oil-in-water drilling fluid because of its "three-high" characteristics: emulsification, stabilization and oiliness. At present, China is short for effective treating technology, which restricts cleaner production in oilfield. This paper focused on technical difficulties of waste oil-in-water drilling fluid treatment in JiDong oilfield of China, adopting physical-chemical collaboration demulsification technology to deal with waste oil-in-water drilling fluid. After oil-water-solid three-phase separation, the oil recovery rate is up to 90% and the recycled oil can be reused for preparation of new drilling fluid. Meanwhile, harmless treatment of wastewater and sludge from waste oil-in-water drilling fluid after oil recycling was studied. The results showed that wastewater after treated was clean, contents of chemical oxygen demand and oil decreased from 993 mg/L and 21,800 mg/L to 89 mg/L and 3.6 mg/L respectively, which can meet the requirements of grade one of "The National Integrated Wastewater Discharge Standard" (GB8978); The pollutants in the sludge after harmless treatment are decreased below the national standard, which achieved the goal of resource recovery and harmless treatment on waste oil-in-water drilling fluid.

Advanced Water Treatment by Ozonation in a Continuous Flow System (연속식 오존접촉조에서의 정수처리효과에 대한 연구)

  • Lee, Byung-Ho;Jung, Woo-Sung;Kim, Jae-Hoon;Lee, Jun-Hee;Kim, Tae-Gun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.2
    • /
    • pp.94-104
    • /
    • 1997
  • Ozone Treatment is getting a common process in a water treatment plant all over the nation. Especially an advanced water treatment using ozone and biofiltration has been a typical method in the regions where using the Nak-Dong River as a drinking water source. The effectiveness of ozone treatment in a continuous flow contact system was investigated with sand filtered water of the Nak-dong River. Pilot tests of the experiments were performed three times of the year like June, August, and October 1995. Most degradable organics of sand filtered water were oxidized in the first and second contact chamber of the system. Ozone treatment was effective for the removal of UV254 absorbance. However, Noticeable removals of $KMnO_4$ demand and TOC(Total Organic Carbon) were occurred when their concentrations exceeded about 5mg/l. The organics causing $KMnO_4$ demand and TOC were degraded into lower molecular matter in an early stage of the ozone contact in the system. Dissolved oxygen concentration was increased after ozone treatment.

  • PDF