• Title/Summary/Keyword: Water treatment

Search Result 12,071, Processing Time 0.049 seconds

Lime Treatment of Waterworks Sludges for Soil Cover in Municipal Landfilling Site (석회처리에 의한 정수 슬러지의 복토재 활용에 관한 연구)

  • Lim, Sung-Jin;Lee, Jae-Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.3
    • /
    • pp.231-239
    • /
    • 2000
  • Water treatment processes produce sludges resulting from water clarification. Sludge production amount increases each year and its treatment and disposal is growing to social problems according to water demand increase. Water treatment plant sludges can be modified to soil cover in sanitary landfill site through the lime treatment. Compression strength of $1.0kg/cm^2$ or more is recommended for soil cover material in municipal landfilling site. Compression and shear strength properties of modified sludges showed material property improvement applicable for soil cover alternatives. Solidification effect of the modified sludge was observed through the scanning electron microscope. Extraction tests for hazardous components in sludges revealed that extraction levels of cadmium, copper, and lead were below the regulated criteria. When adding 10% calcium hydroxide to water treatment plant sludges, the modified sludges can reach material properties for cover soil after 28 days solidification reaction.

  • PDF

Assessment and Optimization of Granular Activated Carbon (GAC) Process in Water Treatment Process (입상활성탄 공정의 진단 및 효율적 운영방안: D 정수장을 중심으로)

  • Kim, Seong Su;Lee, Kyung Hyuk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.781-790
    • /
    • 2005
  • Granular Activated Carbon(GAC) is widely used in drinking water treatment. Many of the problems occurring in the GAC process are associated with the operation goal and performance. The purpose of this study were to evaluate the design, operation, and performance of granular activated carbon process in D water treatment plant. The optimal operation conditions of GAC process such as backwashing condition, granular activated carbon replacement time were discussed. The design, operation and performance of GAC process is influenced by their raw water characteristics and placement within the treatment process sequence. A critical analysis of plants experience and the information from the literature identifies the effectiveness of GAC process and indicates where modifications in design and operation could lead to improved performance. It would be useful to evaluate and optimize the GAC process in other treatment plant.

Water Uptake and Tensile Properties of Plasma Treated Abaca Fiber Reinforced Epoxy Composite

  • Paglicawan, Marissa A.;Basilia, Blessie A.;Kim, Byung Sun
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.165-169
    • /
    • 2013
  • This work presents the tensile properties and water uptake behavior of plasma treated abaca fibers reinforced epoxy composites. The composites were prepared by vacuum assisted resin transfer molding. The effects of treatment on tensile properties and sorption characteristics of abaca fiber composites in distilled water and salt solution at room temperature were investigated. The tensile strength of the composites increased with plasma treatment. With plasma treatment, an improvement of 92.9% was obtained in 2.5 min exposure time in plasma. This is attributed to high fiber-matrix compatibility. Less improvement on tensile properties of hybrid treatment of sodium hydroxide and plasma was obtained. However, both treatments reduced overall water uptake in distilled water and salt solution. Hydrophilicity of the fibers decreased upon plasma and sodium hydroxide treatment, which decreases water uptake.

Treatment Characteristics of Sand Filtration and Microfiltration (MF) in Advanced Water Treatment (고도정수처리에서 사여과와 정밀여과의 유기물처리특성에 관한 연구)

  • Kim, Hyung-Suk;Lee, Byoung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.723-734
    • /
    • 2010
  • With a belief of high water quality production and less chemical usage, membrane technology including Microfiltration (MF), Ultrafiltration (UF), and Nanofiltration(NF) is being employed more and more in drinking water treatment process. However, due to higher energy consumption of UF and NF, MF is normally used for drinking water treatment especially in a plant of large scale. In this investigation, performance ofsand filtration and membrane filtration was compared regarding removal of various water quality parameters, such as TOC, DOC, KMnO4 consumption, THMFP, and HAAFP. Two lines of pilot plant have been operated, one of which line is a traditional advanced water treatment process which includes sedimentation, sand filtration, ozonation, and activated carbon, and the other line is an alternative treatment process which includes sedimentation with inclined plate, MF membrane, ozonation, and activated carbon. For the first about 4months of period, MF filtration showed similar or little bit higher performance than sand filtration. However, after about 4month later, sand filtration showed much higher performance in removing all parameters monitored in the investigation. It was found that sand filtration is a better option than MF filtration as far as microbial community is fully activated in sand filter bed.

Effectiveness of elimination inflowing algae in water treatment plant using natural algae remover (천연 조류 제거제를 이용한 정수장 유입 조류 제거 효율)

  • Jung, Hoyoung;Kim, Younghee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.4
    • /
    • pp.311-319
    • /
    • 2019
  • The purpose of this study was to analyze water treatment characteristics, including the efficiency of removing algae from water purification plants, by installing a demonstration facility for decontamination of algae, including natural algae remover injection equipment, in the water purification plant. Jar-test showed that the optimum injection of natural decontaminant was 20 mg/L. Of the water contaminant treatment efficiency of the intake and water purification plants, Chl-a averaged 74.0% elimination efficiency from $5.0mg/m^3$ to $1.3mg/m^3$ and the maximum treatment efficiency was 91.5% removal efficiency when the inflow concentration of Chl-a was $11.8mg/m^3$. In addition, 51.2% and 47.1% of the taste and odor indicator items, geosmin and 2-MIB, resulted from the overgrowth and decaying of algae, respectively, to identify toxic substances and odor reduction effects. In addition, elimination efficiencies of SS and Turbidity materials were higher than 70.0%. In the injection of natural algae remover, no effects such as sudden changes in water quality due to secondary reactions were found, and appropriate levels were maintained under water treatment conditions.

Economic Feasibility Study on the Efficient Use of Advanced Water Treatment for Water Supply (상수고도정수처리의 효율적 이용을 위한 경제성 검토)

  • 이상일
    • Water for future
    • /
    • v.29 no.1
    • /
    • pp.191-202
    • /
    • 1996
  • Advanced water treatment for water supply is being introduced for the treatment of various organic materials which cannot be removed by conventional water treatment methods. While the development of advanced water treatment system appropriate to the domestic enviropment of advanced water treatment system appropriate to the domestic environment is essential, the study on the economic costs and the social impact is also of importance. In this paper, it is shown how to estimate the costs (capital and maintenance) for advanced water treatment facilities, especially those using ozone treatment combined with activated carbon process and membrance separation. Estimated costs were compared with the government budget. Also, a general relation between the system capacity and investment was derived. Four alternatives were considered form the aspect of the amount of water to be produced and the delivery system to the user. These alternatives were applied to the city of Pusan. It turned out that bottled water, produced only for drinking, has best economic advantages in having minimum system capacity without detriment to water quality.

  • PDF

Carbon Emission Evaluation of Tap Water (수돗물의 탄소 배출량 평가)

  • Kim, Jin-Keun;Jeon, Hong-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.511-517
    • /
    • 2011
  • To evaluate carbon emission in water treatment processes, LCA (life cycle assessment) was applied to 8 multi-regional water treatment plants (WTPs) from intake to supply of tap water. Investigation of 8 WTPs revealed that average carbon emission for 1 $m^3$ of tap water was 221 g. Major carbon emission sources in water supply system were intake and supply processes. Meanwhile, mixing process was the main carbon emission source in unit water treatment processes. Carbon emission was proportional to the turbidity and COD of raw water. Intake of better raw water and minimization of energy consumption in unit processes are needed to reduce carbon emission in the WTPs. In addition, comparison of carbon emission among WTPs can be used as a parameter for optimization of operation and maintenance of water treatment processes.

Application and evaluation for effluent water quality prediction using artificial intelligence model (방류수질 예측을 위한 AI 모델 적용 및 평가)

  • Mincheol Kim;Youngho Park;Kwangtae You;Jongrack Kim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • Occurrence of process environment changes, such as influent load variances and process condition changes, can reduce treatment efficiency, increasing effluent water quality. In order to prevent exceeding effluent standards, it is necessary to manage effluent water quality based on process operation data including influent and process condition before exceeding occur. Accordingly, the development of the effluent water quality prediction system and the application of technology to wastewater treatment processes are getting attention. Therefore, in this study, through the multi-channel measuring instruments in the bio-reactor and smart multi-item water quality sensors (location in bio-reactor influent/effluent) were installed in The Seonam water recycling center #2 treatment plant series 3, it was collected water quality data centering around COD, T-N. Using the collected data, the artificial intelligence-based effluent quality prediction model was developed, and relative errors were compared with effluent TMS measurement data. Through relative error comparison, the applicability of the artificial intelligence-based effluent water quality prediction model in wastewater treatment process was reviewed.

Effects of drinking water containing trimethyl glycine or ascorbic acid on growth performance and blood parameter in ducks under scorching heat wave (폭염 하에서 음수 내 비타민 C와 트리메칠글리신 공급이 오리의 혈액 매개변수 및 생산성에 미치는 효과)

  • Kang, H.K.;Park, B.S.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.411-420
    • /
    • 2016
  • The objective of this study was to determine the effect of drinking water containing trimethyl glycine or ascorbic acid on growth performance and blood parameter profiles of duck exposed to scorching heat stress. A total of 480 ducks were randomly assigned to the following eight experiment groups for 42 days : control group C with general water, treatment group 1 (T1) with drinking water containing 100 ppm ascorbic acid, treatment group 2 (T2) with drinking water containing 200 ppm ascorbic acid, treatment group 3 (T3) with drinking water containing 300 ppm ascorbic acid, treatment group 4 (T4) with drinking water containing 400 ppm trimethyl glycine, treatment group 5 (T5) with drinking water containing 800 ppm trimethyl glycine, treatment group 6 (T6) with drinking water containing 1,200 ppm trimethyl glycine, treatment group 7 (T7) with electrolytes of KCl (0.5%) + $NaHCO_3$ (1.0%)+NaCl (0.5%). Our results revealed that the body weights and feed intakes of treatment groups, especially T3 and T6, were increased compared to the control group, where as the feed conversion ratios of treatment groups were decreased (p<0.05). Blood levels of total cholesterol, triglyceride, LDL-C, glucose, AST, ALT and pH in treatment groups were lower compared to those in the control group (p<0.05). Blood levels of red blood cell, platelets profiles, electrolyte and gas in treatment groups were higher compared to those of the control group (p<0.05).

Cooling and Heating Operation Characteristics of Raw-water Source Heat Pump and Air Source Heat Pump in Water Treatment Facility (정수장 내 원수열원 및 공기열원 히트펌프의 냉난방 운전 특성)

  • Oh, Sun-Hee;Yun, Rin;Cho, Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.386-391
    • /
    • 2013
  • The dynamic characteristics of both raw-water source and air source heat pump utilized in water treatment facilities were investigated by using TRNSYS simulator. The modeling of the raw water source heat pump was verified by the measured data at the Cheongju water treatment facility, and the modeling at the air source heat pump was verified by the data from the Siheung water treatment facility. The average heating and cooling COPs from the raw-water source heat pump were higher than those of the air source heat pump by 19% and 18%, respectively. The power consumptions of the air source heat pump for the cooling and the heating were higher than those of the raw water source heat pump by 28% and 26%, respectively.